login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252738
Row products of irregular table A005940: a(0) = 1; a(1) = 2; for n > 1: 2^(2^(n-2)) * a(n-1) * A003961(a(n-1)); also row products of A163511, A253563, A253565, and A332977.
16
1, 2, 12, 2160, 2449440000, 8488905214204800000000000, 3025568387202006082882734693673523654400000000000000000000000000
OFFSET
0,2
LINKS
FORMULA
a(0) = 1; a(1) = 2; for n > 1: a(n) = 2^(2^(n-2)) * a(n-1) * A003961(a(n-1)).
a(0) = 1; for n>=1: a(n) = Product_{k=A000079(n-1) .. A000225(n)} A163511(k) = Product_{k=2^(n-1) .. (2^n)-1} A163511(k).
a(0) = 1; a(1) = 2; for n > 1: a(n) = A267096(n-2) * a(n-1)^2. [Compare to the formulas of A191555] - Antti Karttunen, Feb 06 2016
From Michael De Vlieger, Jul 21 2023: (Start)
a(n) = Product_{k=1..n+1} prime(k)^e(n,k), where e(n,k) = k-th term in row n of A055248.
A067255(a(n)) = row n of A055248. (End)
EXAMPLE
From Michael De Vlieger, Jul 21 2023: (Start)
a(0) = 1 = product of {1},
a(1) = 2^1 = product of {2},
a(2) = 2^2 * 3^1 = product of {3, 2^2},
a(3) = 2^4 * 3^3 * 5^1 = product of {5, 2^1*3^1, 3^2, 2^3},
a(4) = 2^8 * 3^7 * 5^4 * 7^1 = product of
{7, 2^1*5^1, 3^1*5^1, 2^2*3^1, 5^2, 2^1*3^2, 3^3, 2^4},
...
Table of e(n,k) where a(n) = Product_{k=1..n+1} prime(k)^e(n,k):
prime(k)| 2 3 5 7 11 13 17 19 23 29 31 ...
n\k | 1 2 3 4 5 6 7 8 9 10 11 ...
----------------------------------------------------
0 | 1
1 | 2 1
2 | 4 3 1
3 | 8 7 4 1
4 | 16 15 11 5 1
5 | 32 31 26 16 6 1
6 | 64 63 57 42 22 7 1
7 | 128 127 120 99 64 29 8 1
8 | 256 255 247 219 163 93 37 9 1
9 | 512 511 502 466 382 256 130 46 10 1
10 | 1024 1023 1013 968 848 638 386 176 56 11 1
... (End)
MATHEMATICA
Table[Times @@ Array[Prime[# + 1]^Sum[Binomial[n, # + j], {j, 0, n}] &, n + 1, 0], {n, 0, 5}] (* Michael De Vlieger, Jul 21 2023 *)
PROG
(PARI)
allocatemem(234567890);
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
A252738print(up_to_n) = { my(s, i=0, n=0); for(n=0, up_to_n, if(0 == n, s = 1, if(1 == n, s = 2; lev = vector(1); lev[1] = 2, oldlev = lev; lev = vector(2*length(oldlev)); s = 1; for(i = 0, (2^(n-1))-1, lev[i+1] = if((i%2), A003961(oldlev[(i\2)+1]), 2*oldlev[(i\2)+1]); s *= lev[i+1]))); write("b252738.txt", n, " ", s)); }; \\ Counts them empirically.
A252738print(7);
(Scheme)
(definec (A252738rec n) (if (<= n 1) (+ 1 n) (* (A000079 (A000079 (- n 2))) (A252738rec (- n 1)) (A003961 (A252738rec (- n 1)))))) ;; Implements the given recurrence; uses the memoizing definec-macro.
(define (A252738 n) (if (zero? n) 1 (mul A163511 (A000079 (- n 1)) (A000225 n))))
(define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
;; Another alternative, implementing the new recurrence:
(definec (A252738 n) (if (<= n 1) (+ 1 n) (* (A267096 (- n 2)) (A000290 (A252738 (- n 1)))))) ;; Antti Karttunen, Feb 06 2016
CROSSREFS
These are row products of irregular tables A005940, A163511, A253563 and A253565, which all are shaped like a binary tree.
Partial products of A252740.
Cf. A252737 (row sums), A252739 (divided by n), A252741 (divided by n!).
Sequence in context: A125295 A222065 A253788 * A360067 A357766 A050649
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 21 2014
EXTENSIONS
Typos in the second formula corrected by Antti Karttunen, Feb 06 2016
STATUS
approved