OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..9
FORMULA
a(0) = 1; a(1) = 2; for n > 1: a(n) = 2^(2^(n-2)) * a(n-1) * A003961(a(n-1)).
a(0) = 1; for n>=1: a(n) = Product_{k=A000079(n-1) .. A000225(n)} A163511(k) = Product_{k=2^(n-1) .. (2^n)-1} A163511(k).
a(0) = 1; a(1) = 2; for n > 1: a(n) = A267096(n-2) * a(n-1)^2. [Compare to the formulas of A191555] - Antti Karttunen, Feb 06 2016
From Michael De Vlieger, Jul 21 2023: (Start)
a(n) = Product_{k=1..n+1} prime(k)^e(n,k), where e(n,k) = k-th term in row n of A055248.
EXAMPLE
From Michael De Vlieger, Jul 21 2023: (Start)
a(0) = 1 = product of {1},
a(1) = 2^1 = product of {2},
a(2) = 2^2 * 3^1 = product of {3, 2^2},
a(3) = 2^4 * 3^3 * 5^1 = product of {5, 2^1*3^1, 3^2, 2^3},
a(4) = 2^8 * 3^7 * 5^4 * 7^1 = product of
{7, 2^1*5^1, 3^1*5^1, 2^2*3^1, 5^2, 2^1*3^2, 3^3, 2^4},
...
Table of e(n,k) where a(n) = Product_{k=1..n+1} prime(k)^e(n,k):
prime(k)| 2 3 5 7 11 13 17 19 23 29 31 ...
n\k | 1 2 3 4 5 6 7 8 9 10 11 ...
----------------------------------------------------
0 | 1
1 | 2 1
2 | 4 3 1
3 | 8 7 4 1
4 | 16 15 11 5 1
5 | 32 31 26 16 6 1
6 | 64 63 57 42 22 7 1
7 | 128 127 120 99 64 29 8 1
8 | 256 255 247 219 163 93 37 9 1
9 | 512 511 502 466 382 256 130 46 10 1
10 | 1024 1023 1013 968 848 638 386 176 56 11 1
... (End)
MATHEMATICA
Table[Times @@ Array[Prime[# + 1]^Sum[Binomial[n, # + j], {j, 0, n}] &, n + 1, 0], {n, 0, 5}] (* Michael De Vlieger, Jul 21 2023 *)
PROG
(PARI)
allocatemem(234567890);
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
A252738print(up_to_n) = { my(s, i=0, n=0); for(n=0, up_to_n, if(0 == n, s = 1, if(1 == n, s = 2; lev = vector(1); lev[1] = 2, oldlev = lev; lev = vector(2*length(oldlev)); s = 1; for(i = 0, (2^(n-1))-1, lev[i+1] = if((i%2), A003961(oldlev[(i\2)+1]), 2*oldlev[(i\2)+1]); s *= lev[i+1]))); write("b252738.txt", n, " ", s)); }; \\ Counts them empirically.
A252738print(7);
(Scheme)
(definec (A252738rec n) (if (<= n 1) (+ 1 n) (* (A000079 (A000079 (- n 2))) (A252738rec (- n 1)) (A003961 (A252738rec (- n 1)))))) ;; Implements the given recurrence; uses the memoizing definec-macro.
(define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
;; Another alternative, implementing the new recurrence:
(definec (A252738 n) (if (<= n 1) (+ 1 n) (* (A267096 (- n 2)) (A000290 (A252738 (- n 1)))))) ;; Antti Karttunen, Feb 06 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 21 2014
EXTENSIONS
Typos in the second formula corrected by Antti Karttunen, Feb 06 2016
STATUS
approved