login
A360067
a(n) = det(M) where M is an n X n matrix with M[i,j] = i^j*(i-j).
1
1, 0, 2, 12, 2304, 898560, 4827340800, 143219736576000, 49230909076930560000, 149334225705682285363200000, 5482643392499167214520238080000000, 2322479608280149573505226859610112000000000, 13283541711093841017468807905468592685056000000000000
OFFSET
0,3
FORMULA
For n>=1, a(n) = A000178(n-1) * A089064(n). - Vaclav Kotesovec, Apr 19 2024
MAPLE
a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j) -> i^j*(i-j))):
seq(a(n), n=0..12); # Alois P. Heinz, Jan 25 2023
MATHEMATICA
a[n_] := Det@Table[i^j (i - j), {i, n}, {j, n}]; Table[a[n], {n, 1, 15}]
PROG
(PARI) a(n) = matdet(matrix(n, n, i, j, i^j*(i-j))); \\ Michel Marcus, Jan 24 2023
(Python)
from sympy import Matrix
def A360067(n): return Matrix(n, n, [i**j*(i-j) for i in range(1, n+1) for j in range(1, n+1)]).det() # Chai Wah Wu, Jan 27 2023
KEYWORD
nonn
AUTHOR
STATUS
approved