login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360067
a(n) = det(M) where M is an n X n matrix with M[i,j] = i^j*(i-j).
1
1, 0, 2, 12, 2304, 898560, 4827340800, 143219736576000, 49230909076930560000, 149334225705682285363200000, 5482643392499167214520238080000000, 2322479608280149573505226859610112000000000, 13283541711093841017468807905468592685056000000000000
OFFSET
0,3
FORMULA
For n>=1, a(n) = A000178(n-1) * A089064(n). - Vaclav Kotesovec, Apr 19 2024
MAPLE
a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j) -> i^j*(i-j))):
seq(a(n), n=0..12); # Alois P. Heinz, Jan 25 2023
MATHEMATICA
a[n_] := Det@Table[i^j (i - j), {i, n}, {j, n}]; Table[a[n], {n, 1, 15}]
PROG
(PARI) a(n) = matdet(matrix(n, n, i, j, i^j*(i-j))); \\ Michel Marcus, Jan 24 2023
(Python)
from sympy import Matrix
def A360067(n): return Matrix(n, n, [i**j*(i-j) for i in range(1, n+1) for j in range(1, n+1)]).det() # Chai Wah Wu, Jan 27 2023
KEYWORD
nonn
AUTHOR
STATUS
approved