login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = det(M) where M is an n X n matrix with M[i,j] = i^j*(i-j).
1

%I #23 Apr 19 2024 07:11:55

%S 1,0,2,12,2304,898560,4827340800,143219736576000,49230909076930560000,

%T 149334225705682285363200000,5482643392499167214520238080000000,

%U 2322479608280149573505226859610112000000000,13283541711093841017468807905468592685056000000000000

%N a(n) = det(M) where M is an n X n matrix with M[i,j] = i^j*(i-j).

%F For n>=1, a(n) = A000178(n-1) * A089064(n). - _Vaclav Kotesovec_, Apr 19 2024

%p a:= n-> LinearAlgebra[Determinant](Matrix(n, (i,j) -> i^j*(i-j))):

%p seq(a(n), n=0..12); # _Alois P. Heinz_, Jan 25 2023

%t a[n_] := Det@Table[i^j (i - j), {i, n}, {j, n}]; Table[a[n], {n, 1, 15}]

%o (PARI) a(n) = matdet(matrix(n, n, i, j, i^j*(i-j))); \\ _Michel Marcus_, Jan 24 2023

%o (Python)

%o from sympy import Matrix

%o def A360067(n): return Matrix(n,n,[i**j*(i-j) for i in range(1,n+1) for j in range(1,n+1)]).det() # _Chai Wah Wu_, Jan 27 2023

%Y Cf. A060238, A174890, A176005, A176001, A000178, A089064, A152653.

%K nonn

%O 0,3

%A _José María Grau Ribas_, Jan 24 2023