OFFSET
1,1
COMMENTS
For n = 8 and 9 there are no triangular numbers T(k) such that n*T(k)-+1 are twin primes.
a(8) = 0 because 8*T(k)+1 = A016754(k) = composite number for k >= 1.
a(9) = 0 because 9*T(k)+1 = A060544(k+1) = composite number for k >= 1.
Are there numbers n > 9 such that a(n) = 0? If a(n) = 0 for n > 9, n must be bigger than 4000.
EXAMPLE
a(5) = 6 because 6 is the smallest smallest triangular number with this property: 5*6 -+ 1 = 29 and 31 (twin primes).
MATHEMATICA
a248580[n_Integer] := Catch@Module[{T, k}, T[i_] := i (i + 1)/2; Do[If[And[PrimeQ[n*T[k] + 1], PrimeQ[n*T[k] - 1]], Throw[T[k]], 0], {k, 1, 10^4}] /. Null -> 0]; a248580 /@ Range[70] (* Michael De Vlieger, Nov 12 2014 *)
PROG
(Magma) A248580:=func<n|exists(r){m*(m+1)/2:m in[1..1000000] | IsPrime(n*m*(m+1) div 2+1) and IsPrime(n*m*(m+1) div 2-1)}select r else 0>; [A248580(n): n in[1..100]]
(PARI) a(n) = {if ((n==8) || (n==9), return (0)); k = 1; while (!isprime(n*k*(k+1)/2-1) || !isprime(n*k*(k+1)/2+1), k++); k*(k+1)/2; } \\ Michel Marcus, Nov 12 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 25 2014
STATUS
approved