login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248579
a(n) = the smallest numbers k such that n*T(k)-1 and n*T(k)+1 are twin primes or 0 if no solution exists for n where T(k) = A000217(k) = k-th triangular number.
2
3, 2, 3, 1, 3, 1, 3, 0, 0, 2, 12, 1, 11, 2, 4, 5, 3, 1, 12, 2, 24, 6, 3, 2, 3, 12, 4, 5, 20, 1, 27, 3, 3, 2, 11, 2, 56, 3, 7, 3, 32, 1, 44, 5, 3, 2, 3, 11, 12, 2, 7, 3, 15, 5, 20, 14, 4, 3, 32, 1, 27, 6, 8, 2, 8, 2, 11, 5, 7, 3, 167, 1, 20, 9, 12, 2, 3, 18
OFFSET
1,1
COMMENTS
For n = 8 and 9 there are no triangular numbers T(k) such that n*T(k) +/- 1 are twin primes.
a(8) = 0 because 8*T(k) + 1 = A016754(k) = composite number for k >= 1.
a(9) = 0 because 9*T(k) + 1 = A060544(k+1) = composite number for k >= 1.
Are there numbers n > 9 such that a(n) = 0? If a(n) = 0 for n > 9, n must be bigger than 4000.
a(n) > 0 for 10 <= n <= 100000. - Robert Israel, Aug 10 2023
LINKS
EXAMPLE
a(5) = 3 because 3 is the smallest number k with this property: 5*T(3) -/+ 1 = 5*6 -+ 1 = 29 and 31 (twin primes).
MAPLE
f:= proc(n) local k;
for k from 1 do if isprime(n*k*(k+1)/2+1) and isprime(n*k*(k+1)/2-1) then return k fi od:
end proc;
f(8):= 8: f(9):= 0:
map(f, [$1..100]); # Robert Israel, Aug 10 2023
PROG
(Magma) A248579:=func<n|exists(r){m:m in[1..1000000] | IsPrime(n*m*(m+1) div 2+1) and IsPrime(n*m*(m+1) div 2-1)}select r else 0>; [A248579(n): n in[1..100]]
(PARI) a(n) = {if ((n==8) || (n==9), return (0)); k = 1; while (!isprime(n*k*(k+1)/2-1) || !isprime(n*k*(k+1)/2+1), k++); k; } \\ Michel Marcus, Nov 05 2014
CROSSREFS
a(n) = 1: A014574.
Sequence in context: A236228 A082391 A283977 * A296992 A304783 A316830
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 25 2014
STATUS
approved