login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367976
Decimal expansion of Sum_{k >= 0} (-1)^k/(1+k^2).
1
6, 3, 6, 0, 1, 4, 5, 2, 7, 4, 9, 1, 0, 6, 6, 5, 8, 1, 4, 7, 5, 1, 1, 8, 2, 9, 1, 8, 3, 6, 0, 1, 8, 7, 7, 7, 9, 2, 0, 3, 5, 9, 1, 8, 1, 7, 3, 0, 1, 5, 7, 9, 7, 4, 7, 5, 3, 4, 4, 8, 3, 9, 1, 9, 2, 8, 1, 2, 3, 0, 9, 5, 6, 8, 4, 7, 4, 3, 9, 4, 4, 0, 9, 5, 5, 7, 6, 5, 5, 8, 6, 0, 5, 3, 4, 6, 8, 8, 2, 2, 4, 3, 0, 5
OFFSET
0,1
FORMULA
Equals (2-Pi*tanh(Pi/2)+Pi*coth(Pi/2))/4 = (1 - A228048 + Pi/2*A367961)/2.
From Amiram Eldar, Dec 11 2023: (Start)
Equals (1 + Pi/sinh(Pi))/2.
Equals Integral_{x>=0} (cos(x)/cosh(x))^2 dx. (End)
Equals (1+A090986)/2. - R. J. Mathar, Dec 13 2023
EXAMPLE
0.636014527491066581475118291836...
MAPLE
1/4*(2-Pi*tanh(Pi/2)+Pi*coth(Pi/2)) ; evalf(%) ;
MATHEMATICA
RealDigits[(1 + Pi*Csch[Pi])/2, 10, 120][[1]] (* Amiram Eldar, Dec 11 2023 *)
PROG
(PARI) sumalt(k=0, (-1)^k/(1+k^2)) \\ Michel Marcus, Dec 07 2023
CROSSREFS
Cf. A113319.
Sequence in context: A319894 A241786 A019151 * A143506 A248580 A008567
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Dec 07 2023
STATUS
approved