Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jun 10 2024 00:13:29
%S 6,3,6,0,1,4,5,2,7,4,9,1,0,6,6,5,8,1,4,7,5,1,1,8,2,9,1,8,3,6,0,1,8,7,
%T 7,7,9,2,0,3,5,9,1,8,1,7,3,0,1,5,7,9,7,4,7,5,3,4,4,8,3,9,1,9,2,8,1,2,
%U 3,0,9,5,6,8,4,7,4,3,9,4,4,0,9,5,5,7,6,5,5,8,6,0,5,3,4,6,8,8,2,2,4,3,0,5
%N Decimal expansion of Sum_{k >= 0} (-1)^k/(1+k^2).
%F Equals (2-Pi*tanh(Pi/2)+Pi*coth(Pi/2))/4 = (1 - A228048 + Pi/2*A367961)/2.
%F From _Amiram Eldar_, Dec 11 2023: (Start)
%F Equals (1 + Pi/sinh(Pi))/2.
%F Equals Integral_{x>=0} (cos(x)/cosh(x))^2 dx. (End)
%F Equals (1+A090986)/2. - _R. J. Mathar_, Dec 13 2023
%e 0.636014527491066581475118291836...
%p 1/4*(2-Pi*tanh(Pi/2)+Pi*coth(Pi/2)) ; evalf(%) ;
%t RealDigits[(1 + Pi*Csch[Pi])/2, 10, 120][[1]] (* _Amiram Eldar_, Dec 11 2023 *)
%o (PARI) sumalt(k=0, (-1)^k/(1+k^2)) \\ _Michel Marcus_, Dec 07 2023
%Y Cf. A113319.
%K nonn,cons
%O 0,1
%A _R. J. Mathar_, Dec 07 2023