Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 08 2022 08:46:10
%S 6,3,6,1,6,1,6,0,0,3,78,1,66,3,10,15,6,1,78,3,300,21,6,3,6,78,10,15,
%T 210,1,378,6,6,3,66,3,1596,6,28,6,528,1,990,15,6,3,6,66,78,3,28,6,120,
%U 15,210,105,10,6,528,1,378,21,36,3,36,3,66,15,28,6
%N a(n) = the smallest triangular number T(k) such that n*T(k)-1 and n*T(k)+1 are twin primes or 0 if no solution exists for n; T(k) = A000217(k) = k-th triangular number.
%C For n = 8 and 9 there are no triangular numbers T(k) such that n*T(k)-+1 are twin primes.
%C a(8) = 0 because 8*T(k)+1 = A016754(k) = composite number for k >= 1.
%C a(9) = 0 because 9*T(k)+1 = A060544(k+1) = composite number for k >= 1.
%C Are there numbers n > 9 such that a(n) = 0? If a(n) = 0 for n > 9, n must be bigger than 4000.
%F a(n) = A000217(A248579(n)).
%e a(5) = 6 because 6 is the smallest smallest triangular number with this property: 5*6 -+ 1 = 29 and 31 (twin primes).
%t a248580[n_Integer] := Catch@Module[{T, k}, T[i_] := i (i + 1)/2; Do[If[And[PrimeQ[n*T[k] + 1], PrimeQ[n*T[k] - 1]], Throw[T[k]], 0], {k, 1, 10^4}] /. Null -> 0]; a248580 /@ Range[70] (* _Michael De Vlieger_, Nov 12 2014 *)
%o (Magma) A248580:=func<n|exists(r){m*(m+1)/2:m in[1..1000000] | IsPrime(n*m*(m+1) div 2+1) and IsPrime(n*m*(m+1) div 2-1)}select r else 0>; [A248580(n): n in[1..100]]
%o (PARI) a(n) = {if ((n==8) || (n==9), return (0)); k = 1; while (!isprime(n*k*(k+1)/2-1) || !isprime(n*k*(k+1)/2+1), k++); k*(k+1)/2; } \\ _Michel Marcus_, Nov 12 2014
%Y Cf. A000217, A016754, A060544, A248579.
%K nonn
%O 1,1
%A _Jaroslav Krizek_, Oct 25 2014