login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247093
Triangle read by rows: T(m,n) = smallest odd prime p such that (m^p-n^p)/(m-n) is prime (0<n<m), or 0 if no such p exists.
1
3, 3, 3, 0, 0, 3, 3, 5, 13, 3, 3, 0, 0, 0, 5, 5, 3, 3, 5, 3, 3, 3, 0, 3, 0, 19, 0, 7, 0, 3, 0, 0, 3, 0, 3, 7, 19, 0, 3, 0, 0, 0, 31, 0, 3, 17, 5, 3, 3, 5, 3, 5, 7, 5, 3, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 5, 3, 7, 5, 5, 3, 7, 3, 3, 251, 3, 17, 3, 0, 5, 0, 151, 0, 0, 0, 59, 0, 5, 0, 3, 3, 5, 0, 1097, 0, 0, 3, 3, 0, 0, 7, 0, 17, 3
OFFSET
1,1
COMMENTS
T(m,n) is 0 if and only if m and n are not coprime or A052409(m) and A052409(n) are not coprime. (The latter has some exceptions, like T(8,1) = 3. In fact, if p is a prime and does not equal to A052410(gcd(A052409(m),A052409(n))), then (m^p-n^p)/(m-n) is composite, so if it is not 0, then it is A052410(gcd(A052409(m),A052409(n))).) - Eric Chen, Nov 26 2014
a(i) = T(m,n) corresponds only to probable primes for (m,n) = {(15,4), (18,1), (19,18), (31,6), (37,22), (37,25), ...} (i={95, 137, 171, 441, 652, 655, ...}). With the exception of these six (m,n), all corresponding primes up to a(663) are definite primes. - Eric Chen, Nov 26 2014
a(n) is currently known up to n = 663, a(664) = T(37, 34) > 10000. - Eric Chen, Jun 01 2015
For n up to 1000, a(n) is currently unknown only for n = 664, 760, and 868. - Eric Chen, Jun 01 2015
EXAMPLE
Read by rows:
m\n 1 2 3 4 5 6 7 8 9 10 11
2 3
3 3 3
4 0 0 3
5 3 5 13 3
6 3 0 0 0 5
7 5 3 3 5 3 3
8 3 0 3 0 19 0 7
9 0 3 0 0 3 0 3 7
10 19 0 3 0 0 0 31 0 3
11 17 5 3 3 5 3 5 7 5 3
12 3 0 0 0 3 0 3 0 0 0 3
etc.
MATHEMATICA
t1[n_] := Floor[3/2 + Sqrt[2*n]]
m[n_] := Floor[(-1 + Sqrt[8*n-7])/2]
t2[n_] := n-m[n]*(m[n]+1)/2
b[n_] := GCD @@ Last /@ FactorInteger[n]
is[m_, n_] := GCD[m, n] == 1 && GCD[b[m], b[n]] == 1
Do[k=2, If[is[t1[n], t2[n]], While[ !PrimeQ[t1[n]^Prime[k] - t2[n]^Prime[k]], k++]; Print[Prime[k]], Print[0]], {n, 1, 663}] (* Eric Chen, Jun 01 2015 *)
PROG
(PARI) a052409(n) = my(k=ispower(n)); if(k, k, n>1);
a(m, n) = {if (gcd(m, n) != 1, return (0)); if (gcd(a052409(m), a052409(n)) != 1, return (0)); forprime(p=3, , if (isprime((m^p-n^p)/(m-n)), return (p)); ); }
tabl(nn) = {for (m=2, nn, for(n=1, m-1, print1(a(m, n), ", "); ); print(); ); } \\ Michel Marcus, Nov 19 2014
(PARI) t1(n)=floor(3/2+sqrt(2*n))
t2(n)=n-binomial(floor(1/2+sqrt(2*n)), 2)
b(n)=my(k=ispower(n)); if(k, k, n>1)
a(n)=if(gcd(t1(n), t2(n)) !=1 || gcd(b(t1(n)), b(t2(n))) !=1, 0, forprime(p=3, 2^24, if(ispseudoprime((t1(n)^p-t2(n)^p)/(t1(n)-t2(n))), return(p)))) \\ Eric Chen, Jun 01 2015
CROSSREFS
Cf. A128164 (n,1), A125713 (n+1,n), A125954 (2n+1,2), A122478 (2n+1,2n-1).
Cf. A000043 (2,1), A028491 (3,1), A057468 (3,2), A059801 (4,3), A004061 (5,1), A082182 (5,2), A121877 (5,3), A059802 (5,4), A004062 (6,1), A062572 (6,5), A004063 (7,1), A215487 (7,2), A128024 (7,3), A213073 (7,4), A128344 (7,5), A062573 (7,6), A128025 (8,3), A128345 (8,5), A062574 (8,7), A173718 (9,2), A128346 (9,5), A059803 (9,8), A004023 (10,1), A128026 (10,3), A062576 (10,9), A005808 (11,1), A210506 (11,2), A128027 (11,3), A216181 (11,4), A128347 (11,5), A062577 (11,10), A004064 (12,1), A128348 (12,5), A062578 (12,11).
Sequence in context: A289893 A265466 A002073 * A329273 A130719 A143606
KEYWORD
nonn,tabl
AUTHOR
Eric Chen, Nov 18 2014
STATUS
approved