login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329273 a(1)=1. If n is prime, a(n)=0; if not, a(n) = (the smallest prime number greater than n) minus (the largest prime number smaller than n) minus 1. 0
1, 0, 0, 1, 0, 1, 0, 3, 3, 3, 0, 1, 0, 3, 3, 3, 0, 1, 0, 3, 3, 3, 0, 5, 5, 5, 5, 5, 0, 1, 0, 5, 5, 5, 5, 5, 0, 3, 3, 3, 0, 1, 0, 3, 3, 3, 0, 5, 5, 5, 5, 5, 0, 5, 5, 5, 5, 5, 0, 1, 0, 5, 5, 5, 5, 5, 0, 3, 3, 3, 0, 1, 0, 5, 5, 5, 5, 5, 0, 3, 3, 3, 0, 5, 5, 5, 5, 5, 0, 7, 7, 7, 7, 7, 7, 7, 0, 3, 3, 3
(list; graph; refs; listen; history; text; internal format)
OFFSET
1,8
COMMENTS
When n is not a prime number, a(n) expresses the size of the prime gap to which n belongs.
LINKS
FORMULA
a(1)=1. If n is prime, a(n)=0; if not, a(n) = nextprime(n) - precprime(n) - 1.
The nonzero terms are one less than the nonzero terms of A072680. More precisely, a(n) = A072680(n) - sign(A072680(n)) for n > 1. - Rémy Sigrist, Nov 30 2019
EXAMPLE
Let n=9. The smallest prime number, greater than 9 is 11, the largest prime number, smaller than 9 is 7. a(9)=11-7-1=3.
MATHEMATICA
Array[Which[# == 1, 1, PrimeQ@ #, 0, True, Prime[# + 1] - Prime@ # - 1 &@ PrimePi@ #] &, 105] (* Michael De Vlieger, Nov 18 2019 *)
PROG
(PARI) a(n) = if (n==1, 1, if (isprime(n), 0, nextprime(n+1) - precprime(n-1) - 1)); \\ Michel Marcus, Dec 01 2019
CROSSREFS
Sequence in context: A265466 A002073 A247093 * A130719 A143606 A126660
KEYWORD
nonn
AUTHOR
Todor Szimeonov, Nov 11 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 09:40 EDT 2024. Contains 376007 sequences. (Running on oeis4.)