login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245387
Numbers k for which the alternating sum of the digits of k^k is +-1.
1
1, 5, 10, 20, 21, 43, 56, 78, 80, 100, 131, 160, 170, 215, 230, 300, 355, 485, 505, 540, 692, 824, 1000, 1055, 1165, 1335, 1340, 1429, 1453, 1505, 1739, 2102, 2309, 2740, 2936, 3772, 3972, 4055, 4489, 4676, 5080, 5512, 5600, 5660, 5700, 5770, 5796, 6350, 7173, 7512, 7790, 8372, 9380, 9767, 10000
OFFSET
1,2
COMMENTS
k may be present only if k^k == +-1 (mod 11).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..400 (first 164 terms from Anthony Sand and Robert G. Wilson v)
EXAMPLE
5 is a member since 5^5 = 3125 -> 3 - 1 + 2 - 5 = -1.
MATHEMATICA
fQ[n_] := Block[{id = IntegerDigits[n^n]}, Abs[ Sum[id[[i]]*(-1)^i, {i, Length@ id}]] == 1]; k = 1; lst = {}; While[k < 10001, If[ fQ@ k, AppendTo[lst, k]]; k++]; lst
PROG
(PARI) is(n)=n=digits((n/10^valuation(n, 10))^n); abs(sum(i=1, #n, (-1)^i*n[i]))==1
forstep(n=1, 1e6, [4, 5, 2, 3, 5, 1, 2, 2, 5, 2, 2, 1, 5, 3, 2, 5, 4, 2, 4, 5, 2, 3, 5, 1, 2, 2, 5, 2, 2, 1, 5, 3, 2, 5, 4, 2], if(is(n), print1(n", "))) \\ Charles R Greathouse IV, Jul 22 2014
CROSSREFS
Sequence in context: A115825 A115774 A062052 * A115799 A072703 A086761
KEYWORD
nonn,base
AUTHOR
STATUS
approved