Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 03 2019 01:54:14
%S 1,5,10,20,21,43,56,78,80,100,131,160,170,215,230,300,355,485,505,540,
%T 692,824,1000,1055,1165,1335,1340,1429,1453,1505,1739,2102,2309,2740,
%U 2936,3772,3972,4055,4489,4676,5080,5512,5600,5660,5700,5770,5796,6350,7173,7512,7790,8372,9380,9767,10000
%N Numbers k for which the alternating sum of the digits of k^k is +-1.
%C k may be present only if k^k == +-1 (mod 11).
%H Charles R Greathouse IV, <a href="/A245387/b245387.txt">Table of n, a(n) for n = 1..400</a> (first 164 terms from Anthony Sand and Robert G. Wilson v)
%e 5 is a member since 5^5 = 3125 -> 3 - 1 + 2 - 5 = -1.
%t fQ[n_] := Block[{id = IntegerDigits[n^n]}, Abs[ Sum[id[[i]]*(-1)^i, {i, Length@ id}]] == 1]; k = 1; lst = {}; While[k < 10001, If[ fQ@ k, AppendTo[lst, k]]; k++]; lst
%o (PARI) is(n)=n=digits((n/10^valuation(n,10))^n); abs(sum(i=1,#n,(-1)^i*n[i]))==1
%o forstep(n=1,1e6,[4, 5, 2, 3, 5, 1, 2, 2, 5, 2, 2, 1, 5, 3, 2, 5, 4, 2, 4, 5, 2, 3, 5, 1, 2, 2, 5, 2, 2, 1, 5, 3, 2, 5, 4, 2], if(is(n), print1(n", "))) \\ _Charles R Greathouse IV_, Jul 22 2014
%Y Cf. A244212, A244144.
%K nonn,base
%O 1,2
%A _Anthony Sand_ and _Robert G. Wilson v_, Jul 20 2014