login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244411
Nonprimes n such that the product of its divisors is a palindrome.
4
1, 4, 22, 26, 49, 111, 121, 202, 1001, 1111, 2285, 10001, 10201, 11111, 100001, 1000001, 1001001, 1012101, 1100011, 1101011, 1109111, 1111111, 3069307, 10000001, 12028229, 12866669, 100000001, 101000101, 110000011, 110091011, 200010002, 10000000001, 10011111001
OFFSET
1,2
COMMENTS
Primes trivially satisfy this property and are therefore not included in the sequence.
Numbers n such that A136522(A007955(n)) = 1.
A number is in the intersection of A002778 and A001358 iff it is in this sequence.
a(31) > 2*10^8.
a(32) > 4*10^8. - Chai Wah Wu, Aug 25 2015
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..47 (terms < 3.5*10^11)
EXAMPLE
The divisors of 26 are 1,2,13,26. And 1*2*13*26 = 676 is a palindrome. Thus 26 is a member of this sequence.
PROG
(PARI) rev(n)={r=""; for(i=1, #digits(n), r=concat(Str(digits(n)[i]), r)); return(eval(r))}
for(n=1, 2*10^8, if(!isprime(n), d=divisors(n); ss=prod(j=1, #d, d[j]); if(ss==rev(ss), print1(n, ", "))))
(Python)
import sympy
from sympy import isprime
from sympy import divisors
def rev(n):
..r = ""
..for i in str(n):
....r = i + r
..return int(r)
def a():
..for n in range(1, 10**8):
....if not isprime(n):
......p = 1
......for i in divisors(n):
........p*=i
......if rev(p)==p:
........print(n, end=', ')
a()
(Python)
from sympy import divisor_count, sqrt
A244411_list = [1]
for n in range(1, 10**5):
d = divisor_count(n)
if d > 2:
q, r = divmod(d, 2)
s = str(n**q*(sqrt(n) if r else 1))
if s == s[::-1]:
A244411_list.append(n) # Chai Wah Wu, Aug 25 2015
CROSSREFS
KEYWORD
nonn,base,hard
AUTHOR
Derek Orr, Jun 27 2014
EXTENSIONS
a(31) from Chai Wah Wu, Aug 25 2015
a(32)-a(33) from Giovanni Resta, Sep 20 2019
STATUS
approved