login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244410
Number of unlabeled rooted trees with 2n+1 nodes and maximal outdegree (branching factor) n.
3
1, 1, 5, 16, 49, 142, 415, 1198, 3473, 10048, 29118, 84376, 244747, 710198, 2062273, 5991417, 17416400, 50652247, 147384675, 429043389, 1249508946, 3640449678, 10610613551, 30937605075, 90237313082, 263288153073, 768449666116, 2243530461066, 6552016136666
OFFSET
0,3
LINKS
FORMULA
a(n) = A244372(2n+1,n).
a(n) ~ c * d^n / sqrt(n), where d = 2.955765285651994974714817524... is the Otter's rooted tree constant (see A051491), and c = 2.806733... . - Vaclav Kotesovec, Jul 11 2014
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
end:
a:= n-> `if`(n=0, 1, b(2*n$2, n$2)-b(2*n$2, n-1$2)):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]* b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]] // FullSimplify] ; a[n_] := If[n == 0, 1, b[2*n, 2 n, n, n] - b[2*n, 2 n, n - 1, n - 1]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 27 2014
STATUS
approved