login
A242490
Smallest even number k such that lpf(k-3) = prime(n) while lpf(k-1) > lpf(k-3), where lpf=least prime factor (A020639).
8
6, 8, 80, 14, 224, 20, 440, 854, 32, 1460, 1742, 44, 2282, 3434, 4190, 62, 5432, 4760, 74, 12194, 8930, 8054, 12374, 13292, 104, 15350, 110, 14282, 31982, 17402, 18212, 140, 24050, 152, 25220, 29990, 28202, 32234, 33392, 182, 43262, 194, 44972, 200, 47564
OFFSET
2,1
COMMENTS
Note that the "small terms" {6,8,14,20,32,44,...} correspond to a(n) for which {a(n)-3, a(n)-1} is a twin pair such that the corresponding positions form sequence A029707.
If we change the definition to consider k for which {k-3, k-1} is not a twin pair, we obtain a closely related sequence 12,38,80,212,224,530,440,854,1250,1460,1742,... which shows a "model behavior" of A242490, if there are only a finite number of twin primes. - Vladimir Shevelev, May 19 2014
LINKS
EXAMPLE
Let n=2, prime(2)=3. Then lpf(6-3)=3, but lpf(6-1)=5>3. Since k=6 is the smallest such k, a(2)=6.
PROG
(PARI) a(n)=my(p=prime(n), k=p+3); while(factor(k-3)[1, 1]<p || factor(k-1)[1, 1]<p, k += 2*p); k \\ Charles R Greathouse IV, May 30 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 16 2014
EXTENSIONS
Correction and more terms from Peter J. C. Moses, May 19 2014
STATUS
approved