login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242489
Smallest even k such that lpf(k-1) = prime(n), while lpf(k-3) > prime(n), where lpf=least prime factor (A020639).
9
10, 26, 50, 254, 170, 392, 362, 944, 842, 1892, 1370, 2420, 1850, 2210, 3764, 6314, 3722, 4892, 5042, 7082, 8612, 9380, 7922, 12320, 11414, 10610, 11450, 13844, 18872, 16130, 17162, 20414, 19322, 26672, 24614, 25592, 29504, 37910, 29930, 44930, 36020, 36482
OFFSET
2,1
COMMENTS
This sequence is connected with a sufficient condition for the infinitude of twin primes.
Almost all numbers of the form a(n)-3 are primes. For composite numbers of such a form, see A242716.
Primes p for which a(p) = p^2+1 form sequence A062326 for p >= 3. - Vladimir Shevelev, May 21 2014
LINKS
FORMULA
a(n) >= prime(n)^2+1. - Vladimir Shevelev, May 21 2014
EXAMPLE
Let n=2, prime(2)=3. Then lpf(10-1)=3, but lpf(10-3)=7>3.
Since k=10 is the smallest such k, then a(2)=10.
MATHEMATICA
lpf[n_]:=lpf[n]=First[Select[Divisors[n], PrimeQ[#]&]];
Table[test=Prime[n]; NestWhile[#+2&, test^2+1, !((lpf[#-1]==test)&&(lpf[#-3]>test))&], {n, 2, 60}] (* Peter J. C. Moses, May 21 2014 *)
PROG
(PARI) a(n) = {k = 6; p = prime(n); while ((factor(k-1)[1, 1] != p) || (factor(k-3)[1, 1] <= p), k+= 2); k; } \\ Michel Marcus, May 16 2014
CROSSREFS
Sequence in context: A134406 A099978 A242719 * A074789 A229308 A125075
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 16 2014
EXTENSIONS
More terms from Michel Marcus, May 16 2014
STATUS
approved