OFFSET
2,1
COMMENTS
The sequence is connected with a sufficient condition for the existence of an infinity of twin primes. In contrast to A242489, this sequence is nondecreasing.
All even numbers of the form A062326(n)^2 + 1 are in the sequence. All a(n)-1 are semiprimes. - Vladimir Shevelev, May 24 2014
a(n) <= A242489(n); a(n) >= prime(n)^2+1. Conjecture: a(n) <= prime(n)^4. - Vladimir Shevelev, Jun 01 2014
Conjecture: all numbers a(n)-3 are primes. Peter J. C. Moses verified this conjecture up to a(2001) (cf. with conjecture in A242720). - Vladimir Shevelev, Jun 09 2014
LINKS
Jinyuan Wang, Table of n, a(n) for n = 2..5000 (terms 2..2001 from Peter J. C. Moses).
FORMULA
Conjecturally, a(n) ~ (prime(n))^2, as n goes to infinity (cf. A246748, A246819). - Vladimir Shevelev, Sep 02 2014
a(n) = prime(n)^2 + 1 for and only for numbers n>=2 which are in A137291. - Vladimir Shevelev, Sep 04 2014
MATHEMATICA
lpf[k_] := FactorInteger[k][[1, 1]];
a[n_] := a[n] = For[k = If[n == 2, 10, a[n-1]], True, k = k+2, If[lpf[k-3] > lpf[k-1] >= Prime[n], Return[k]]];
Array[a, 50, 2] (* Jean-François Alcover, Nov 06 2018 *)
PROG
(PARI)
lpf(k) = factorint(k)[1, 1];
vector(50, n, k=6; while(lpf(k-3)<=lpf(k-1) || lpf(k-1)<prime(n+1), k+=2); k) \\ Colin Barker, Jun 01 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 21 2014
STATUS
approved