login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242719
Smallest even k such that lpf(k-3) > lpf(k-1) >= prime(n), where lpf=least prime factor (A020639).
29
10, 26, 50, 170, 170, 362, 362, 842, 842, 1370, 1370, 1850, 1850, 2210, 3722, 3722, 3722, 4892, 5042, 7082, 7922, 7922, 7922, 10610, 10610, 10610, 11450, 13844, 16130, 16130, 17162, 19322, 19322, 24614, 24614, 25592, 29504, 29930, 29930, 36020, 36020
OFFSET
2,1
COMMENTS
The sequence is connected with a sufficient condition for the existence of an infinity of twin primes. In contrast to A242489, this sequence is nondecreasing.
All even numbers of the form A062326(n)^2 + 1 are in the sequence. All a(n)-1 are semiprimes. - Vladimir Shevelev, May 24 2014
a(n) <= A242489(n); a(n) >= prime(n)^2+1. Conjecture: a(n) <= prime(n)^4. - Vladimir Shevelev, Jun 01 2014
Conjecture: all numbers a(n)-3 are primes. Peter J. C. Moses verified this conjecture up to a(2001) (cf. with conjecture in A242720). - Vladimir Shevelev, Jun 09 2014
LINKS
Jinyuan Wang, Table of n, a(n) for n = 2..5000 (terms 2..2001 from Peter J. C. Moses).
FORMULA
Conjecturally, a(n) ~ (prime(n))^2, as n goes to infinity (cf. A246748, A246819). - Vladimir Shevelev, Sep 02 2014
a(n) = prime(n)^2 + 1 for and only for numbers n>=2 which are in A137291. - Vladimir Shevelev, Sep 04 2014
MATHEMATICA
lpf[k_] := FactorInteger[k][[1, 1]];
a[n_] := a[n] = For[k = If[n == 2, 10, a[n-1]], True, k = k+2, If[lpf[k-3] > lpf[k-1] >= Prime[n], Return[k]]];
Array[a, 50, 2] (* Jean-François Alcover, Nov 06 2018 *)
PROG
(PARI)
lpf(k) = factorint(k)[1, 1];
vector(50, n, k=6; while(lpf(k-3)<=lpf(k-1) || lpf(k-1)<prime(n+1), k+=2); k) \\ Colin Barker, Jun 01 2014
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 21 2014
STATUS
approved