login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242405
Expansion of (b(q) / b(q^2))^2 in powers of q where b() is a cubic AGM theta function.
2
1, -6, 15, -24, 39, -72, 123, -192, 294, -456, 693, -1008, 1452, -2100, 2991, -4176, 5781, -7992, 10950, -14808, 19908, -26688, 35541, -46944, 61692, -80826, 105366, -136536, 176208, -226728, 290565, -370704, 471318, -597600, 755217, -950976, 1193988
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
FORMULA
Expansion of (chi(-q)^3 / chi(-q^3))^2 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q)^3 * eta(q^6) / (eta(q^2)^3 * eta(q^3)))^2 in powers of q.
Euler transform of period 6 sequence [ -6, 0, -4, 0, -6, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 4 g(t) where q = exp(2 Pi i t) and g() is g.f. for A216046.
G.f.: Product_{k>0} ((1 - x^(2*k-1))^3 / (1 - x^(6*k-3)))^2.
Convolution square of A141094.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 - 6*q + 15*q^2 - 24*q^3 + 39*q^4 - 72*q^5 + 123*q^6 - 192*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x, x^2]^3 / QPochhammer[ x^3, x^6])^2, {x, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)))^2, n))};
CROSSREFS
Sequence in context: A217747 A341007 A345959 * A064565 A190515 A051940
KEYWORD
sign
AUTHOR
Michael Somos, May 13 2014
STATUS
approved