OFFSET
0,1
COMMENTS
This constant is transcendental (Troi and Zannier, 1999). - Amiram Eldar, Nov 28 2020
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 179.
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.
G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers, Bollettino dell'Unione Matematica Italiana, Serie 7, Vol. 9-A, No. 1 (1995), pp. 143-148.
LINKS
G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers - II, Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 2-B, No. 2 (1999), pp. 397-399; alternative link.
Umberto Zannier, On the distribution of self-numbers, Proc. Amer. Math. Soc., Vol. 85, No. 1 (1982), pp. 10-14.
FORMULA
Equals (1/8)*(Sum_{n not a binary self-number} 1/2^n)^2.
EXAMPLE
0.2526602590088829221550627143278941418252...
MATHEMATICA
m0 = 100; dm = 100; digits = 100; Clear[lambda]; lambda[m_] := lambda[m] = Total[1/2^Union[Table[n + Total[IntegerDigits[n, 2]], {n, 0, m}]]]^2/8 // N[#, 2*digits]& // RealDigits[#, 10, 2*digits]& // First; lambda[m0]; lambda[m = m0 + dm]; While[lambda[m] != lambda[m - dm], Print["m = ", m]; m = m + dm]; lambda[m][[1 ;; digits]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, May 13 2014
STATUS
approved