login
A242403
Decimal expansion of the binary self-numbers density constant.
3
2, 5, 2, 6, 6, 0, 2, 5, 9, 0, 0, 8, 8, 8, 2, 9, 2, 2, 1, 5, 5, 0, 6, 2, 7, 1, 4, 3, 2, 7, 8, 9, 4, 1, 4, 1, 8, 2, 5, 2, 1, 9, 3, 3, 9, 6, 2, 9, 7, 8, 4, 6, 1, 3, 0, 1, 6, 8, 6, 2, 1, 7, 2, 2, 9, 2, 2, 8, 0, 5, 4, 8, 4, 4, 7, 6, 6, 3, 2, 5, 6, 6, 9, 5, 9, 1, 4, 2, 4, 4, 7, 9, 3, 8, 6, 8, 8, 9, 4, 9
OFFSET
0,1
COMMENTS
This constant is transcendental (Troi and Zannier, 1999). - Amiram Eldar, Nov 28 2020
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 179.
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.
G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers, Bollettino dell'Unione Matematica Italiana, Serie 7, Vol. 9-A, No. 1 (1995), pp. 143-148.
LINKS
G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers - II, Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 2-B, No. 2 (1999), pp. 397-399; alternative link.
Umberto Zannier, On the distribution of self-numbers, Proc. Amer. Math. Soc., Vol. 85, No. 1 (1982), pp. 10-14.
FORMULA
Equals (1/8)*(Sum_{n not a binary self-number} 1/2^n)^2.
EXAMPLE
0.2526602590088829221550627143278941418252...
MATHEMATICA
m0 = 100; dm = 100; digits = 100; Clear[lambda]; lambda[m_] := lambda[m] = Total[1/2^Union[Table[n + Total[IntegerDigits[n, 2]], {n, 0, m}]]]^2/8 // N[#, 2*digits]& // RealDigits[#, 10, 2*digits]& // First; lambda[m0]; lambda[m = m0 + dm]; While[lambda[m] != lambda[m - dm], Print["m = ", m]; m = m + dm]; lambda[m][[1 ;; digits]]
CROSSREFS
Cf. A010061 (binary self numbers), A003052 (decimal self numbers), A010064, A010067, A010070, A092391, A228082.
Sequence in context: A344077 A198539 A121311 * A179015 A195621 A267090
KEYWORD
nonn,cons
AUTHOR
STATUS
approved