login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (b(q) / b(q^2))^2 in powers of q where b() is a cubic AGM theta function.
2

%I #8 Mar 31 2018 07:33:02

%S 1,-6,15,-24,39,-72,123,-192,294,-456,693,-1008,1452,-2100,2991,-4176,

%T 5781,-7992,10950,-14808,19908,-26688,35541,-46944,61692,-80826,

%U 105366,-136536,176208,-226728,290565,-370704,471318,-597600,755217,-950976,1193988

%N Expansion of (b(q) / b(q^2))^2 in powers of q where b() is a cubic AGM theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

%H G. C. Greubel, <a href="/A242405/b242405.txt">Table of n, a(n) for n = 0..1000</a>

%F Expansion of (chi(-q)^3 / chi(-q^3))^2 in powers of q where chi() is a Ramanujan theta function.

%F Expansion of (eta(q)^3 * eta(q^6) / (eta(q^2)^3 * eta(q^3)))^2 in powers of q.

%F Euler transform of period 6 sequence [ -6, 0, -4, 0, -6, 0, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 4 g(t) where q = exp(2 Pi i t) and g() is g.f. for A216046.

%F G.f.: Product_{k>0} ((1 - x^(2*k-1))^3 / (1 - x^(6*k-3)))^2.

%F Convolution square of A141094.

%F a(n) ~ (-1)^n * exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - _Vaclav Kotesovec_, Nov 16 2017

%e G.f. = 1 - 6*q + 15*q^2 - 24*q^3 + 39*q^4 - 72*q^5 + 123*q^6 - 192*q^7 + ...

%t a[ n_] := SeriesCoefficient[ (QPochhammer[ x, x^2]^3 / QPochhammer[ x^3, x^6])^2, {x, 0, n}];

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)))^2, n))};

%Y Cf. A141094, A216046.

%K sign

%O 0,2

%A _Michael Somos_, May 13 2014