login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241607
Semiprimes generated by the polynomial (1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316).
1
5141923, 6084557, 11403823, 13201987, 17488411, 20017609, 33239291, 37446979, 42070423, 47139347, 72512623, 88747907, 118408673, 129881707, 169708339, 184952323, 201267887, 278376073, 324881567, 406044923, 436421497, 538566199, 616639427, 658920007, 750410069
OFFSET
1,1
COMMENTS
(1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316) is a well known prime producing polynomial found by Shyam Sunder Gupta, which generates 57 distinct primes for n = 0,1,...,55,56.
For n = 57, this polynomial yields the first semiprime: 5141923 = 821 * 6263.
LINKS
EXAMPLE
For n=57: (1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316) = 5141923 = 821 * 6263, which is a semiprime and is included in the sequence.
For n=58: (1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316) = 6084557 = 131 * 46447, which is a semiprime and is included in the sequence.
MAPLE
with(numtheory): KD:= proc() local a, b, k; k:=(1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316); a:=bigomega(k); if a=2 then RETURN (k); fi; end: seq(KD(), n=0..200);
MATHEMATICA
A241607 = {}; Do[k= (1/4) * (n^5 - 133 * n^4 + 6729 * n^3 - 158379 * n^2 + 1720294 * n - 6823316); If[PrimeOmega[k] ==2, AppendTo[A241607, k]], {n, 200}]; A241607
(*For the b-file:*) n=0; Do[t=((1/4) * (k^5 - 133 * k^4 + 6729 * k^3 - 158379 * k^2 + 1720294 * k - 6823316)); If[PrimeOmega[t]==2, n++; Print[n, " ", t]], {k, 10^6}]
PROG
(PARI) s=[]; for(n=1, 200, t=(1/4)*(n^5-133*n^4+6729*n^3-158379*n^2+1720294*n-6823316); if(bigomega(t)==2, s=concat(s, t))); s \\ Colin Barker, Apr 26 2014
CROSSREFS
Cf. A007641 (for primes).
Sequence in context: A186624 A157844 A263039 * A140658 A172715 A257153
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 26 2014
STATUS
approved