login
A241609
Number of length n+2 0..3 arrays with no consecutive three elements summing to more than 3.
1
20, 50, 125, 295, 711, 1730, 4175, 10077, 24377, 58928, 142396, 344201, 832011, 2010980, 4860690, 11748840, 28397936, 68640170, 165909570, 401018224, 969296175, 2342874854, 5662936565, 13687818660, 33084669767, 79968578621
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 4*a(n-3) - 3*a(n-4) - a(n-5) - 3*a(n-6) + 2*a(n-7) + a(n-9) - a(n-10).
Empirical g.f.: x*(20 + 10*x + 25*x^2 - 35*x^3 - 19*x^4 - 22*x^5 + 20*x^6 + 3*x^7 + 6*x^8 - 10*x^9) / ((1 - x)*(1 - x - x^2 - 5*x^3 - 2*x^4 - x^5 + 2*x^6 - x^9)). - Colin Barker, Oct 30 2018
EXAMPLE
Some solutions for n=5:
..1....2....3....2....1....0....3....0....1....1....1....1....1....3....2....0
..0....1....0....1....2....1....0....0....1....1....0....1....1....0....0....1
..1....0....0....0....0....2....0....0....0....0....1....0....1....0....0....1
..0....0....1....0....0....0....1....0....1....2....2....0....1....2....3....1
..0....0....2....1....1....1....1....0....1....1....0....1....0....1....0....0
..0....2....0....2....2....1....1....0....0....0....0....0....1....0....0....0
..3....1....1....0....0....1....0....1....1....2....0....0....1....2....1....3
CROSSREFS
Column 3 of A241619.
Sequence in context: A231293 A227771 A228023 * A331753 A345124 A049390
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 26 2014
STATUS
approved