login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228023
Primitive antiharmonic numbers.
6
1, 20, 50, 117, 200, 242, 325, 500, 578, 605, 650, 800, 968, 1025, 1058, 1280, 1445, 1476, 1682, 1700, 2312, 2340, 2600, 2645, 3200, 3362, 3757, 3872, 4205, 4232, 4352, 4418, 4693, 5618, 6728, 6962, 7514, 8228, 8405, 8833, 9248, 9425, 9472, 10082, 10400, 11045, 11849, 12493
OFFSET
1,2
COMMENTS
Antiharmonic numbers (A020487) which are not the product of an antiharmonic number and a relatively prime square > 1. Apart from the first term, a subsequence of A227771 (antiharmonic numbers that are not squares).
Is this sequence infinite? It seems that 4n^2 <= a(n) <= 8n^2 for n > 1, and that a(n) ~ 6n^2 as n -> infinity--see A228036 for motivation.
The antiharmonic mean of the divisors of a(n) is A228024(n).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
200 = 2^3 * 5^2 is antiharmonic (since sigma_2(200)/sigma(200) = 119 is an integer) but 2^3 is not antiharmonic, so 200 is in this sequence.
180 = 2^2 * 3^2 * 5 is antiharmonic but 180/3^2 = 20 is also antiharmonic, so 180 is not in the sequence.
PROG
(PARI) isf(f)=denominator(prod(i=1, #f~, (f[i, 1]^(f[i, 2]+1)+1)/(f[i, 1]+1)))==1
nosmaller(f, startAt)=for(i=startAt, #f~, if(f[i, 2]%2==0&&f[i, 2], return(nosmaller(f, i+1)&&!(f[i, 2]=0)&&!isf(f)&&nosmaller(f, i+1)))); 1
is(n)=my(f); isf(f=factor(n))&&nosmaller(f, 1)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved