login
A157844
103680000n^2 - 161251200n + 62697601.
3
5126401, 154915201, 512064001, 1076572801, 1848441601, 2827670401, 4014259201, 5408208001, 7009516801, 8818185601, 10834214401, 13057603201, 15488352001, 18126460801, 20971929601, 24024758401, 27284947201, 30752496001
OFFSET
1,1
COMMENTS
The identity (103680000*n^2-161251200*n+62697601)^2-(3600*n^2-5599*n+2177)*(1728000*n-1343760)^2=1 can be written as a(n)^2-A157842(n)*A157843(n)^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-5126401-139535998*x-62697601*x^2)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {5126401, 154915201, 512064001}, 40]
PROG
(Magma) I:=[5126401, 154915201, 512064001]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 103680000*n^2 - 161251200*n + 62697601.
CROSSREFS
Sequence in context: A234785 A206136 A186624 * A263039 A241607 A140658
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 07 2009
STATUS
approved