login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157842 a(n) = 3600*n^2 - 5599*n + 2177. 3
178, 5379, 17780, 37381, 64182, 98183, 139384, 187785, 243386, 306187, 376188, 453389, 537790, 629391, 728192, 834193, 947394, 1067795, 1195396, 1330197, 1472198, 1621399, 1777800, 1941401, 2112202, 2290203, 2475404, 2667805 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (103680000*n^2-161251200*n+62697601)^2-(3600*n^2-5599*n+2177)*(1728000*n-1343760)^2=1 can be written as A157844(n)^2-a(n)*A157843(n)^2=1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).

G.f.: x*(-178-4845*x-2177*x^2)/(x-1)^3.

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {178, 5379, 17780}, 40]

PROG

(Magma) I:=[178, 5379, 17780]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];

(PARI) a(n) = 3600*n^2 - 5599*n + 2177.

CROSSREFS

Cf. A157843, A157844.

Sequence in context: A297588 A189440 A163730 * A323742 A273550 A053017

Adjacent sequences:  A157839 A157840 A157841 * A157843 A157844 A157845

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 03:33 EST 2022. Contains 358353 sequences. (Running on oeis4.)