login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240991 Integers m such that A240923(m) = 1. 1
6, 18, 28, 117, 162, 196, 496, 775, 1458, 8128, 9604, 13122, 15376, 19773, 24025, 88723, 118098, 257049, 470596, 744775, 796797, 1032256, 1062882, 2896363, 6725201, 9565938, 12326221, 14776336, 23059204, 25774633, 27237961, 33550336, 43441281, 63455131 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Perfect numbers (A000396) are a subsequence, since they satisfy sigma(m)/m = 2/1 = (sigma(1)+ 1)/1, that is of the form (sigma(d)+1)/d, with sigma being A000203.

Similarly, k-multiperfect numbers satisfy A240923(m) = k-1.

The analogous sequence of integers such that A240923(m) = 0 is A014567.

Holdener et al. say that these numbers have a quasi-friendly divisor and prove that they cannot have more than two distinct prime divisors. - Michel Marcus, Sep 08 2020

LINKS

Michel Marcus, Table of n, a(n) for n = 1..51

C. A. Holdener and J. A. Holdener, Characterizing Quasi-Friendly Divisors, Journal of Integer Sequences, Vol. 23 (2020), Article 20.8.4.

MAPLE

filter:= proc(n) uses numtheory; local r; r:= sigma(n)/n; numer(r) - sigma(denom(r)) = 1 end proc:

select(filter, [$1..10^5]); # Robert Israel, Aug 07 2014

MATHEMATICA

a240923[n_Integer] :=

Numerator[DivisorSigma[1, n]/n] -

  DivisorSigma[1, Denominator[DivisorSigma[1, n]/n]];

a240991[n_Integer] := Flatten[Position[Thread[a240923[Range[n]]], 1]];

a240991[1000000] (* Michael De Vlieger, Aug 06 2014 *)

CROSSREFS

Cf. A000203, A014567, A017665, A017666.

Sequence in context: A157800 A225110 A077660 * A304050 A242394 A030568

Adjacent sequences:  A240988 A240989 A240990 * A240992 A240993 A240994

KEYWORD

nonn

AUTHOR

Michel Marcus, Aug 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 11 03:49 EDT 2021. Contains 343784 sequences. (Running on oeis4.)