login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240923
a(n) = numerator(sigma(n)/n) - sigma(denominator(sigma(n)/n)).
4
0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 3, 0, 4, 2, 0, 0, 1, 0, 3, 0, 6, 0, 2, 0, 7, 0, 1, 0, 6, 0, 0, 4, 9, 0, 0, 0, 10, 0, 2, 0, 8, 0, 9, 2, 12, 0, 3, 0, 0, 6, 7, 0, 7, 0, 7, 0, 15, 0, 8, 0, 16, 0, 0, 0, 12, 0, 9, 8, 24, 0, 5, 0, 19, 0, 15, 0, 14, 0, 3, 0, 21, 0
OFFSET
1,10
COMMENTS
a(n) is the integer t, such that if sigma(n)/n is written in its reduced form, nk/dk = A017665(n)/A017666(n), then we have (sigma(dk)+t)/dk.
It appears that a(n) is never negative.
a(n) = 0 if and only if n is in A014567 (n and sigma(n) are relatively prime).
LINKS
William G. Stanton and Judy A. Holdener, Abundancy "Outlaws" of the Form (sigma(N) + t)/N, Journal of Integer Sequences , Vol 10 (2007) , Article 07.9.6.
EXAMPLE
For n=10, sigma(10)/10 = 18/10 = 9/5 = (sigma(5) + 3)/5, hence a(10)=3.
MAPLE
with(numtheory): A240923:=n->numer(sigma(n)/n) - sigma(denom(sigma(n)/n)): seq(A240923(n), n=1..100); # Wesley Ivan Hurt, Aug 06 2014
MATHEMATICA
Table[Numerator[DivisorSigma[1, n]/n] - DivisorSigma[1, Denominator[ DivisorSigma[1, n]/n]], {n, 100}] (* Wesley Ivan Hurt, Aug 06 2014 *)
PROG
(PARI) a(n) = my(ab = sigma(n)/n); numerator(ab) - sigma(denominator(ab));
(Haskell)
import Data.Ratio ((%), numerator, denominator)
a240923 n = numerator sq - a000203 (denominator sq)
where sq = a000203 n % n
-- Reinhard Zumkeller, Aug 05 2014
(Python)
from gmpy2 import mpq
from sympy import divisors
map(lambda x: x.numerator-sum(divisors(x.denominator)), [mpq(sum(divisors(n)), n) for n in range(1, 10**5)]) # Chai Wah Wu, Aug 05 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Aug 03 2014
STATUS
approved