Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Sep 14 2020 17:29:39
%S 6,18,28,117,162,196,496,775,1458,8128,9604,13122,15376,19773,24025,
%T 88723,118098,257049,470596,744775,796797,1032256,1062882,2896363,
%U 6725201,9565938,12326221,14776336,23059204,25774633,27237961,33550336,43441281,63455131
%N Integers m such that A240923(m) = 1.
%C Perfect numbers (A000396) are a subsequence, since they satisfy sigma(m)/m = 2/1 = (sigma(1)+ 1)/1, that is of the form (sigma(d)+1)/d, with sigma being A000203.
%C Similarly, k-multiperfect numbers satisfy A240923(m) = k-1.
%C The analogous sequence of integers such that A240923(m) = 0 is A014567.
%C Holdener et al. say that these numbers have a quasi-friendly divisor and prove that they cannot have more than two distinct prime divisors. - _Michel Marcus_, Sep 08 2020
%H Michel Marcus, <a href="/A240991/b240991.txt">Table of n, a(n) for n = 1..51</a>
%H C. A. Holdener and J. A. Holdener, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Holdener/holdener4.html">Characterizing Quasi-Friendly Divisors</a>, Journal of Integer Sequences, Vol. 23 (2020), Article 20.8.4.
%p filter:= proc(n) uses numtheory; local r; r:= sigma(n)/n; numer(r) - sigma(denom(r)) = 1 end proc:
%p select(filter, [$1..10^5]); # _Robert Israel_, Aug 07 2014
%t a240923[n_Integer] :=
%t Numerator[DivisorSigma[1, n]/n] -
%t DivisorSigma[1, Denominator[DivisorSigma[1, n]/n]];
%t a240991[n_Integer] := Flatten[Position[Thread[a240923[Range[n]]], 1]];
%t a240991[1000000] (* _Michael De Vlieger_, Aug 06 2014 *)
%Y Cf. A000203, A014567, A017665, A017666.
%K nonn
%O 1,1
%A _Michel Marcus_, Aug 06 2014