login
A240202
Number of partitions p of n such that mean(p) > multiplicity(max(p)).
3
0, 0, 1, 2, 3, 5, 8, 12, 17, 24, 34, 47, 64, 87, 116, 154, 202, 264, 341, 443, 564, 721, 915, 1155, 1445, 1820, 2261, 2808, 3476, 4293, 5264, 6477, 7889, 9627, 11709, 14196, 17130, 20746, 24920, 29936, 35898, 42983, 51231, 61176, 72646, 86318, 102373, 121133
OFFSET
0,4
FORMULA
A240200(n) + A116900(n) + a(n) = A000041(n) for n >= 1.
EXAMPLE
a(6) counts these 8 partitions: 6, 51, 42, 411, 33, 321, 3111, 21111.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n];
t1 = Table[Count[f[n], p_ /; Mean[p] < Count[p, Max[p]]], {n, 0, z}] (* A240200 *)
t2 = Table[Count[f[n], p_ /; Mean[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240201 *)
t3 = Table[Count[f[n], p_ /; Mean[p] == Count[p, Max[p]]], {n, 0, z}] (* A116900 *)
t4 = Table[Count[f[n], p_ /; Mean[p] > Count[p, Max[p]]], {n, 0, z}] (* A240202 *)
t5 = Table[Count[f[n], p_ /; Mean[p] >= Count[p, Max[p]]], {n, 0, z}] (* A116901 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 03 2014
STATUS
approved