login
A233969
Partial sums of A006950.
2
1, 2, 3, 5, 8, 12, 17, 24, 34, 47, 63, 84, 112, 147, 190, 245, 315, 401, 506, 636, 797, 993, 1229, 1516, 1866, 2286, 2787, 3389, 4111, 4969, 5985, 7191, 8622, 10309, 12290, 14621, 17362, 20568, 24308, 28676, 33772, 39694, 46562, 54529, 63762, 74432, 86738
OFFSET
0,2
COMMENTS
The first three columns of A211970 are A211971, A000041, A006950, so for k = 0..2, the partial sums of column k of A211970 give: A015128, A000070, this sequence.
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(n/2))/(2*Pi*sqrt(n)). - Vaclav Kotesovec, Oct 27 2016
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, b(n-i, i-irem(i, 2)))))
end:
a:= proc(n) option remember; b(n, n) +`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..50); # Alois P. Heinz, Jan 12 2014
MATHEMATICA
Accumulate[CoefficientList[Series[x*QPochhammer[-1/x, x^2]/((1 + x) * QPochhammer[x^2]), {x, 0, 50}], x]] (* Vaclav Kotesovec, Oct 27 2016 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 12 2014
STATUS
approved