login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233969
Partial sums of A006950.
2
1, 2, 3, 5, 8, 12, 17, 24, 34, 47, 63, 84, 112, 147, 190, 245, 315, 401, 506, 636, 797, 993, 1229, 1516, 1866, 2286, 2787, 3389, 4111, 4969, 5985, 7191, 8622, 10309, 12290, 14621, 17362, 20568, 24308, 28676, 33772, 39694, 46562, 54529, 63762, 74432, 86738
OFFSET
0,2
COMMENTS
The first three columns of A211970 are A211971, A000041, A006950, so for k = 0..2, the partial sums of column k of A211970 give: A015128, A000070, this sequence.
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(n/2))/(2*Pi*sqrt(n)). - Vaclav Kotesovec, Oct 27 2016
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, b(n-i, i-irem(i, 2)))))
end:
a:= proc(n) option remember; b(n, n) +`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..50); # Alois P. Heinz, Jan 12 2014
MATHEMATICA
Accumulate[CoefficientList[Series[x*QPochhammer[-1/x, x^2]/((1 + x) * QPochhammer[x^2]), {x, 0, 50}], x]] (* Vaclav Kotesovec, Oct 27 2016 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 12 2014
STATUS
approved