OFFSET
0,3
COMMENTS
Partial sums of A036408.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((2*n+1)*(2*n^2 + 2*n + 27)/120).
a(n) = floor((2*n^3 + 3*n^2 + 28*n + 36)/60).
a(n) = ceiling((2*n^3 + 3*n^2 + 28*n - 9)/60).
a(n) = a(n-10) + (n+1)*(n-10) + 43.
From R. J. Mathar, Dec 06 2010: (Start)
G.f.: x*(1 - x + x^3 + x^7 - x^9 + x^10) / ( (1+x)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1)*(x-1)^4 ).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-10) - 3*a(n-11) + 3*a(n-12) - a(n-13). (End)
EXAMPLE
a(10) = 0 + 1 + 1 + 1 + 2 + 3 + 4 + 5 + 7 + 9 + 10 = 43.
MAPLE
seq(ceil((2*n^3+3*n^2+28*n-9)/60), n=0..50)
PROG
(Magma) [Round((2*n+1)*(2*n^2+2*n+27)/120): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Mircea Merca, Dec 05 2010
STATUS
approved