login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175827
Partial sums of ceiling(n^2/10).
2
0, 1, 2, 3, 5, 8, 12, 17, 24, 33, 43, 56, 71, 88, 108, 131, 157, 186, 219, 256, 296, 341, 390, 443, 501, 564, 632, 705, 784, 869, 959, 1056, 1159, 1268, 1384, 1507, 1637, 1774, 1919, 2072, 2232, 2401, 2578, 2763, 2957, 3160, 3372, 3593, 3824, 4065, 4315
OFFSET
0,3
COMMENTS
Partial sums of A036408.
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((2*n+1)*(2*n^2 + 2*n + 27)/120).
a(n) = floor((2*n^3 + 3*n^2 + 28*n + 36)/60).
a(n) = ceiling((2*n^3 + 3*n^2 + 28*n - 9)/60).
a(n) = a(n-10) + (n+1)*(n-10) + 43.
From R. J. Mathar, Dec 06 2010: (Start)
G.f.: x*(1 - x + x^3 + x^7 - x^9 + x^10) / ( (1+x)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1)*(x-1)^4 ).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-10) - 3*a(n-11) + 3*a(n-12) - a(n-13). (End)
EXAMPLE
a(10) = 0 + 1 + 1 + 1 + 2 + 3 + 4 + 5 + 7 + 9 + 10 = 43.
MAPLE
seq(ceil((2*n^3+3*n^2+28*n-9)/60), n=0..50)
PROG
(Magma) [Round((2*n+1)*(2*n^2+2*n+27)/120): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
CROSSREFS
Sequence in context: A275580 A175829 A241552 * A061535 A280276 A233969
KEYWORD
nonn
AUTHOR
Mircea Merca, Dec 05 2010
STATUS
approved