login
A241552
Number of partitions p of n such that (number of numbers of the form 5k + 3 in p) is a part of p.
5
0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 12, 17, 23, 34, 47, 64, 87, 115, 154, 204, 266, 346, 444, 573, 731, 933, 1174, 1479, 1855, 2320, 2884, 3578, 4411, 5443, 6678, 8185, 9977, 12157, 14753, 17886, 21608, 26058, 31326, 37631, 45066, 53911, 64300, 76609, 91061
OFFSET
0,7
COMMENTS
Each number in p is counted once, regardless of its multiplicity.
EXAMPLE
a(6) counts these 2 partitions: 321, 3111.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 5], k]
Table[Count[f[n], p_ /; MemberQ[p, s[0, p]]], {n, 0, z}] (* A241549 *)
Table[Count[f[n], p_ /; MemberQ[p, s[1, p]]], {n, 0, z}] (* A241550 *)
Table[Count[f[n], p_ /; MemberQ[p, s[2, p]]], {n, 0, z}] (* A241551 *)
Table[Count[f[n], p_ /; MemberQ[p, s[3, p]]], {n, 0, z}] (* A241552 *)
Table[Count[f[n], p_ /; MemberQ[p, s[4, p]]], {n, 0, z}] (* A241553 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 26 2014
STATUS
approved