login
A241549
Number of partitions p of n such that (number of numbers of the form 5k in p) is a part of p.
5
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 48, 67, 91, 122, 163, 215, 283, 369, 478, 615, 786, 1004, 1270, 1604, 2014, 2521, 3139, 3902, 4824, 5954, 7314, 8970, 10957, 13362, 16232, 19691, 23804, 28737, 34581, 41559, 49802, 59596, 71139, 84799
OFFSET
0,9
COMMENTS
Each number in p is counted once, regardless of its multiplicity.
EXAMPLE
a(6) counts this single partition: 51.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 5], k]
Table[Count[f[n], p_ /; MemberQ[p, s[0, p]]], {n, 0, z}] (* A241549 *)
Table[Count[f[n], p_ /; MemberQ[p, s[1, p]]], {n, 0, z}] (* A241550 *)
Table[Count[f[n], p_ /; MemberQ[p, s[2, p]]], {n, 0, z}] (* A241551 *)
Table[Count[f[n], p_ /; MemberQ[p, s[3, p]]], {n, 0, z}] (* A241552 *)
Table[Count[f[n], p_ /; MemberQ[p, s[4, p]]], {n, 0, z}] (* A241553 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 26 2014
STATUS
approved