login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275580
Add square root of sum of terms.
1
1, 2, 3, 5, 8, 12, 17, 23, 31, 41, 52, 65, 81, 99, 119, 142, 168, 197, 229, 264, 303, 346, 392, 442, 497, 556, 619, 687, 760, 838, 921, 1009, 1103, 1203, 1308, 1419, 1537, 1661, 1791, 1928, 2072, 2223, 2381, 2546, 2719, 2900, 3088
OFFSET
0,2
COMMENTS
a(0) = 1; a(n) = a(n-1) + floor(sqrt(Sum_{i=0..n-1} a(i))).
This appears to give asymptotically a(n) = n^3/36, sum of terms n^4/144, regardless of the starting value a(0).
LINKS
Robert Israel, Formulas for A275580
Christian Krause, LODA
FORMULA
G.f.: (1-x+x^2-x^3+x^4)/((1-x)^3(1+x^2-x^3-x^5)). See link "Formulas for A275580". - Robert Israel, Aug 09 2016
a(n) = n + 1 + Sum_{i=0..n} floor((floor(i^2 / 3) + i) / 4); derived from corresponding LODA program (see link). - Hugo van der Sanden, Feb 24 2021
EXAMPLE
a(3) = a(2) + floor(sqrt(1 + 2)) = 2 + 1 = 3;
a(4) = a(3) + floor(sqrt(1 + 2 + 3)) = 3 + 2 = 5.
MAPLE
G:= (x^4-x^3+x^2-x+1)/((x^5+x^3-x^2-1)*(x-1)^3):
S:= series(G, x, 101):
seq(coeff(S, x, j), j=0..100); # Robert Israel, Aug 09 2016
MATHEMATICA
a = {1}; Do[AppendTo[a, a[[k]] + Floor@ Sqrt@ Total@ a], {k, 46}]; a (* Michael De Vlieger, Aug 03 2016 *)
PROG
(PARI) lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = va[n-1] + floor(sqrt(sum(k=1, n-1, va[k]))); ); va; } \\ Michel Marcus, Aug 02 2016
CROSSREFS
Sequence in context: A022856 A089071 A177205 * A175829 A241552 A175827
KEYWORD
easy,nonn
AUTHOR
Hugo van der Sanden, Aug 02 2016
STATUS
approved