OFFSET
0,4
COMMENTS
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of F(x) + 2*x*F(x^2) + 2*x^3*F(x^4) in powers of x^2 where F(x) = (f(-x) * f(-x^11))^2 and f() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (44 t)) = 22 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A279371.
a(n) = A006571(2*n + 1).
EXAMPLE
G.f. = 1 - x + x^2 - 2*x^3 - 2*x^4 + x^5 + 4*x^6 - x^7 - 2*x^8 + 2*x^10 + ...
G.f. = q - q^3 + q^5 - 2*q^7 - 2*q^9 + q^11 + 4*q^13 - q^15 - 2*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^11])^2, {x, 0, 2 n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^11 + A))^2, n))};
(Magma) A := Basis( CuspForms( Gamma0(44), 2), 146); A[1] - A[3];
(Sage) A = CuspForms( Gamma0(44), 2, prec=146) . basis(); A[0] - A[2];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Dec 25 2016
STATUS
approved