login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275578
Expansion of (F(x) + F(-x)) / 2 in powers of x^2 where F(x) = (f(-x) * f(-x^11))^2 and f() is a Ramanujan theta function.
1
1, -1, 1, -2, -2, 1, 4, -1, -2, 0, 2, -1, -4, 5, 0, 7, -1, -2, 3, -4, -8, -6, -2, 8, -3, 2, -6, 1, 0, 5, 12, 4, 4, -7, 1, -3, 4, 4, -2, -10, 1, -6, -2, 0, 15, -8, -7, 0, -7, -2, 2, -16, 2, 18, 10, -3, 9, -1, -8, 4, 1, 8, -9, 8, 6, -18, 0, 5, -7, 10, -8, 4, 0
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Fourier expansion of a multiplicative cusp form on Gamma_0(44).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of F(x) + 2*x*F(x^2) + 2*x^3*F(x^4) in powers of x^2 where F(x) = (f(-x) * f(-x^11))^2 and f() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (44 t)) = 22 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A279371.
a(n) = A006571(2*n + 1).
EXAMPLE
G.f. = 1 - x + x^2 - 2*x^3 - 2*x^4 + x^5 + 4*x^6 - x^7 - 2*x^8 + 2*x^10 + ...
G.f. = q - q^3 + q^5 - 2*q^7 - 2*q^9 + q^11 + 4*q^13 - q^15 - 2*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^11])^2, {x, 0, 2 n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^11 + A))^2, n))};
(Magma) A := Basis( CuspForms( Gamma0(44), 2), 146); A[1] - A[3];
(Sage) A = CuspForms( Gamma0(44), 2, prec=146) . basis(); A[0] - A[2];
CROSSREFS
Sequence in context: A320500 A140957 A197250 * A112085 A353843 A090002
KEYWORD
sign
AUTHOR
Michael Somos, Dec 25 2016
STATUS
approved