OFFSET
0,3
COMMENTS
Partial sums of A036406.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..860
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,1,-3,3,-1).
FORMULA
a(n) = round((2*n+1)*(2*n^2 + 2*n + 27)/96).
a(n) = floor((n+1)*(2*n^2 + n + 27)/48).
a(n) = ceiling((2*n^3 + 3*n^2 + 28*n)/48).
a(n) = a(n-8) + (n+1)*(n-8) + 30.
From R. J. Mathar, Dec 06 2010: (Start)
G.f.: x*(1 - x + x^2 + x^4 - x^3) / ( (1+x)*(1+x^2)*(x-1)^4 ).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7). (End)
EXAMPLE
a(8) = 0 + 1 + 1 + 2 + 2 + 4 + 5 + 7 + 8 = 30.
MAPLE
seq(floor((n+1)*(2*n^2+n+27)/48), n=0..50)
PROG
(Magma) [&+[Ceiling(k^2/8): k in [0..n]]: n in [0..50]]; // Bruno Berselli, Apr 26 2011
(PARI) a(n)=(n+1)*(2*n^2+n+27)\48 \\ Charles R Greathouse IV, Oct 19 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 05 2010
STATUS
approved