login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175826
Partial sums of ceiling(n^2/8).
3
0, 1, 2, 4, 6, 10, 15, 22, 30, 41, 54, 70, 88, 110, 135, 164, 196, 233, 274, 320, 370, 426, 487, 554, 626, 705, 790, 882, 980, 1086, 1199, 1320, 1448, 1585, 1730, 1884, 2046, 2218, 2399, 2590, 2790, 3001, 3222, 3454, 3696, 3950, 4215, 4492, 4780, 5081, 5394
OFFSET
0,3
COMMENTS
Partial sums of A036406.
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((2*n+1)*(2*n^2 + 2*n + 27)/96).
a(n) = floor((n+1)*(2*n^2 + n + 27)/48).
a(n) = ceiling((2*n^3 + 3*n^2 + 28*n)/48).
a(n) = a(n-8) + (n+1)*(n-8) + 30.
From R. J. Mathar, Dec 06 2010: (Start)
G.f.: x*(1 - x + x^2 + x^4 - x^3) / ( (1+x)*(1+x^2)*(x-1)^4 ).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7). (End)
EXAMPLE
a(8) = 0 + 1 + 1 + 2 + 2 + 4 + 5 + 7 + 8 = 30.
MAPLE
seq(floor((n+1)*(2*n^2+n+27)/48), n=0..50)
PROG
(Magma) [&+[Ceiling(k^2/8): k in [0..n]]: n in [0..50]]; // Bruno Berselli, Apr 26 2011
(PARI) a(n)=(n+1)*(2*n^2+n+27)\48 \\ Charles R Greathouse IV, Oct 19 2022
CROSSREFS
Cf. A175822.
Sequence in context: A287636 A032417 A152415 * A304630 A073470 A086182
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 05 2010
STATUS
approved