login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240201 Number of partitions p of n such that mean(p) <= multiplicity(max(p)). 3
0, 1, 1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 13, 14, 19, 22, 29, 33, 44, 47, 63, 71, 87, 100, 130, 138, 175, 202, 242, 272, 340, 365, 460, 516, 601, 687, 847, 891, 1095, 1249, 1440, 1600, 1943, 2085, 2529, 2816, 3185, 3621, 4356, 4555, 5456, 6166, 6952, 7691, 9156 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
FORMULA
a(n) = A240201(n) + A116900(n) for n >= 1.
a(n) + A240202(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 3 partitions: 222, 2211, 111111.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n];
t1 = Table[Count[f[n], p_ /; Mean[p] < Count[p, Max[p]]], {n, 0, z}] (* A240200 *)
t2 = Table[Count[f[n], p_ /; Mean[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240201 *)
t3 = Table[Count[f[n], p_ /; Mean[p] == Count[p, Max[p]]], {n, 0, z}] (* A116900 *)
t4 = Table[Count[f[n], p_ /; Mean[p] > Count[p, Max[p]]], {n, 0, z}] (* A240202 *)
t5 = Table[Count[f[n], p_ /; Mean[p] >= Count[p, Max[p]]], {n, 0, z}] (* A116901 *)
CROSSREFS
Sequence in context: A035577 A002723 A035937 * A274158 A020999 A309712
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 03 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 19:10 EST 2023. Contains 367540 sequences. (Running on oeis4.)