login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240200 Number of partitions p of n such that mean(p) < multiplicity(max(p)). 5
0, 0, 1, 1, 1, 2, 3, 3, 4, 5, 7, 9, 11, 14, 17, 21, 24, 33, 37, 47, 56, 67, 79, 100, 109, 137, 161, 189, 217, 272, 297, 365, 416, 485, 560, 685, 726, 891, 1029, 1176, 1314, 1600, 1728, 2085, 2336, 2637, 3020, 3621, 3802, 4554, 5171, 5820, 6461, 7691, 8266 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..54.

FORMULA

a(n) = A240201(n) - A116900(n) for n >= 0.

a(n) + A116900(n) + A240202(n) = A000041(n) for n >= 1.

EXAMPLE

a(6) counts these 3 partitions:  222, 2211, 111111.

MATHEMATICA

z = 60; f[n_] := f[n] = IntegerPartitions[n];

t1 = Table[Count[f[n], p_ /; Mean[p] < Count[p, Max[p]]], {n, 0, z}]  (* A240200 *)

t2 = Table[Count[f[n], p_ /; Mean[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240201 *)

t3 = Table[Count[f[n], p_ /; Mean[p] == Count[p, Max[p]]], {n, 0, z}] (* A116900 *)

t4 = Table[Count[f[n], p_ /; Mean[p] > Count[p, Max[p]]], {n, 0, z}] (* A240202 *)

t5 = Table[Count[f[n], p_ /; Mean[p] >= Count[p, Max[p]]], {n, 0, z}] (* A116901 *)

CROSSREFS

Cf. A240201, A240202, A116900, A116901, A000041.

Sequence in context: A305631 A036019 A018120 * A094979 A065565 A309795

Adjacent sequences:  A240197 A240198 A240199 * A240201 A240202 A240203

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 03 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 17:33 EST 2022. Contains 350514 sequences. (Running on oeis4.)