%I #4 Apr 12 2014 16:22:44
%S 0,0,1,2,3,5,8,12,17,24,34,47,64,87,116,154,202,264,341,443,564,721,
%T 915,1155,1445,1820,2261,2808,3476,4293,5264,6477,7889,9627,11709,
%U 14196,17130,20746,24920,29936,35898,42983,51231,61176,72646,86318,102373,121133
%N Number of partitions p of n such that mean(p) > multiplicity(max(p)).
%F A240200(n) + A116900(n) + a(n) = A000041(n) for n >= 1.
%e a(6) counts these 8 partitions: 6, 51, 42, 411, 33, 321, 3111, 21111.
%t z = 60; f[n_] := f[n] = IntegerPartitions[n];
%t t1 = Table[Count[f[n], p_ /; Mean[p] < Count[p, Max[p]]], {n, 0, z}] (* A240200 *)
%t t2 = Table[Count[f[n], p_ /; Mean[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240201 *)
%t t3 = Table[Count[f[n], p_ /; Mean[p] == Count[p, Max[p]]], {n, 0, z}] (* A116900 *)
%t t4 = Table[Count[f[n], p_ /; Mean[p] > Count[p, Max[p]]], {n, 0, z}] (* A240202 *)
%t t5 = Table[Count[f[n], p_ /; Mean[p] >= Count[p, Max[p]]], {n, 0, z}] (* A116901 *)
%Y Cf. A240200, A240201, A116900, A116901, A000041.
%K nonn,easy
%O 0,4
%A _Clark Kimberling_, Apr 03 2014