OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
We have verified this for n up to 10^7.
The conjecture suggests that there are infinitely many primes p with 2*pi(p) + 1 and prime(p) - p + 1 both prime.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
EXAMPLE
a(6) = 2 since 6 = 2 + 4 with 2*2 + 1 = 5, prime(prime(2)) - prime(2) + 1 = prime(3) - 3 + 1 = 3 and prime(prime(4)) - prime(4) + 1 = prime(7) - 7 + 1 = 17 - 6 = 11 all prime, and 6 = 3 + 3 with 2*3 + 1 = 7 and prime(prime(3)) - prime(3) + 1 = prime(5) - 5 + 1 = 11 - 4 = 7 both prime.
MATHEMATICA
p[k_]:=PrimeQ[Prime[Prime[k]]-Prime[k]+1]
a[n_]:=Sum[If[PrimeQ[2k+1]&&p[k]&&p[n-k], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 05 2014
STATUS
approved