The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238755 Second convolution of A065096. 1
 0, 0, 1, 12, 98, 684, 4403, 27048, 161412, 945288, 5466549, 31340628, 178604998, 1013573652, 5735117479, 32385232272, 182622362504, 1028897389008, 5793703249449, 32615362319580, 183593293074730, 1033535639454780, 5819389057957211, 32775522041862072, 184658694508103180 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Fung Lam, Table of n, a(n) for n = 0..1300 FORMULA G.f. = (G.f. of A065096)^2. Recurrence: (n+6)*a(n) = 225*(6-n)*a(n-8) + 1020*(2*n-9)*a(n-7) + 5164*(3-n)*a(n-6) + 76*(78*n-117)*a(n-5) - 3590*n*a(n-4) + 36*(34*n+51)*a(n-3) - 236*(n+3)*a(n-2) + 12*(2*n+9)*a(n-1), n>=8. Recurrence (of order 2): (n-2)*(n+6)*a(n) = 3*(n+1)*(2*n+3)*a(n-1) - n*(n+1)*a(n-2). - Vaclav Kotesovec, Mar 05 2014 a(n) ~ (3*sqrt(2)-4)^(7/2) * (3+2*sqrt(2))^(n+6) / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 05 2014 MATHEMATICA CoefficientList[Series[(1-3*x-Sqrt[1-6*x+x^2])^4/(16*x^3)^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 05 2014 *) PROG (PARI) x='x+O('x^50); concat([0, 0], Vec((1-3*x-sqrt(1-6*x+x^2))^4/(16*x^3)^2)) \\ G. C. Greubel, Apr 05 2017 CROSSREFS Cf. A065096, A000108, A001003. Sequence in context: A166793 A041268 A216028 * A159449 A282285 A090230 Adjacent sequences:  A238752 A238753 A238754 * A238756 A238757 A238758 KEYWORD nonn,easy AUTHOR Fung Lam, Mar 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 16:17 EST 2021. Contains 349445 sequences. (Running on oeis4.)