login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237413
Number of ways to write n = k + m with k > 0 and m > 0 such that p(k)^2 - 2, p(m)^2 - 2 and p(p(m))^2 - 2 are all prime, where p(j) denotes the j-th prime.
8
0, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 5, 3, 1, 3, 3, 3, 3, 3, 1, 3, 1, 2, 2, 5, 2, 3, 3, 5, 2, 5, 7, 3, 3, 4, 5, 5, 5, 4, 4, 5, 2, 3, 4, 7, 5, 3, 4, 8, 6, 5, 4, 6, 5, 4, 2, 6, 5, 6, 5, 2, 6, 7
OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
This conjecture was motivated by the "Super Twin Prime Conjecture".
See A237414 for primes q with q^2 - 2 and p(q)^2 - 2 both prime.
LINKS
Zhi-Wei Sun, Super Twin Prime Conjecture, a message to Number Theory List, Feb. 6, 2014.
Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
EXAMPLE
a(7) = 1 since 7 = 6 + 1 with p(6)^2 - 2 = 13^2 - 2 = 167, p(1)^2 - 2 = 2^2 - 2 = 2 and p(p(1))^2 - 2 = p(2)^2 - 2 = 3^2 - 2 = 7 are all prime.
a(516) = 1 since 516 = 473 + 43 with p(473)^2 - 2 = 3359^2 - 2 = 11282879, p(43)^2 - 2 = 191^2 - 2 = 36479 and p(p(43))^2 - 2 = p(191)^2 - 2 = 1153^2 - 2 = 1329407 all prime.
MATHEMATICA
pq[k_]:=PrimeQ[Prime[k]^2-2]
a[n_]:=Sum[If[pq[k]&&pq[n-k]&&pq[Prime[n-k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 07 2014
STATUS
approved