OFFSET
1,9
COMMENTS
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
EXAMPLE
a(10) = 1 since 10 = 3 + 7 with 3, 7 and prime(3) - 3 + 1 = 3 all prime.
a(28) = 1 since 28 = 5 + 23 with 5, 23 and prime(5) - 4 = 7 all prime.
a(61) = 1 since 61 = 2*7 + 47 with 7, 47 and prime(7) - 6 = 11 all prime.
a(98) = 1 since 98 = 31 + 67 with 31, 67 and prime(31) - 30 = 97 all prime.
MATHEMATICA
p[n_]:=PrimeQ[Prime[n]-n+1]
a[n_]:=Sum[If[p[Prime[k]]&&PrimeQ[n-(1+Mod[n, 2])*Prime[k]], 1, 0], {k, 1, PrimePi[(n-1)/2]}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 04 2014
STATUS
approved