login
A237531
a(n) = |{0 < k < n/2: phi(k*(n-k)) - 1 and phi(k*(n-k)) + 1 are both prime}|, where phi(.) is Euler's totient function.
1
0, 0, 0, 0, 0, 2, 2, 2, 3, 2, 3, 1, 3, 1, 4, 1, 1, 1, 1, 4, 3, 2, 1, 2, 1, 1, 3, 2, 5, 4, 3, 3, 6, 2, 3, 1, 5, 4, 5, 2, 3, 5, 5, 3, 7, 6, 3, 7, 3, 8, 7, 4, 4, 5, 6, 4, 3, 9, 6, 8, 9, 8, 9, 9, 10, 7, 6, 3, 5, 4, 8, 4, 8, 5, 10, 2, 7, 9, 5, 7
OFFSET
1,6
COMMENTS
Conjecture: a(n) > 0 for all n > 5.
Clearly, this implies the twin prime conjecture.
LINKS
EXAMPLE
a(12) = 1 since 12 = 3 + 9 with phi(3*9) - 1 = 17 and phi(3*9) + 1 = 19 both prime.
a(19) = 1 since 19 = 1 + 18 with phi(1*18) - 1 = 5 and phi(1*18) + 1 = 7 both prime.
a(86) = 1 since 86 = 8 + 78 with phi(8*78) - 1 = 191 and phi(8*78) + 1 = 193 both prime.
MATHEMATICA
p[n_]:=PrimeQ[EulerPhi[n]-1]&&PrimeQ[EulerPhi[n]+1]
a[n_]:=Sum[If[p[k(n-k)], 1, 0], {k, 1, (n-1)/2}]
Table[a[n], {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 09 2014
STATUS
approved