login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237530
Number of non-equivalent (mod D_3) ways to choose three points in an n X n X n triangular grid so that they do not form a 2 X 2 X 2 subtriangle.
1
0, 4, 22, 82, 231, 566, 1216, 2410, 4428, 7712, 12780, 20392, 31409, 47032, 68594, 97878, 136836, 187998, 254100, 338602, 445213, 578524, 743424, 945860, 1192126, 1489768, 1846734, 2272430, 2776725, 3371170, 4067840, 4880734, 5824442, 6915732, 8172036, 9613236
OFFSET
2,2
COMMENTS
Without the restriction "non-equivalent (mod D_3)" the numbers are given by A234250.
LINKS
FORMULA
a(n) = (n^6 + 3*n^5 - 3*n^4 + 10*n^3 - 48*n^2 + IF(n==1 mod 2)*(27*n^2 - 45*n - 9) + IF(n==1 mod 3)*64)/288.
G.f.: x^3*(x^7-x^6-2*x^5-15*x^4-13*x^3-16*x^2-10*x-4) / ((x-1)^7*(x+1)^3*(x^2+x+1)). - Colin Barker, Feb 14 2014
MATHEMATICA
LinearRecurrence[{3, 0, -7, 3, 6, 0, -6, -3, 7, 0, -3, 1}, {0, 4, 22, 82, 231, 566, 1216, 2410, 4428, 7712, 12780, 20392}, 40] (* Harvey P. Dale, Dec 09 2021 *)
CROSSREFS
Sequence in context: A201127 A259709 A078155 * A096167 A060453 A038382
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Feb 13 2014
STATUS
approved