Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Dec 09 2021 14:59:35
%S 0,4,22,82,231,566,1216,2410,4428,7712,12780,20392,31409,47032,68594,
%T 97878,136836,187998,254100,338602,445213,578524,743424,945860,
%U 1192126,1489768,1846734,2272430,2776725,3371170,4067840,4880734,5824442,6915732,8172036,9613236
%N Number of non-equivalent (mod D_3) ways to choose three points in an n X n X n triangular grid so that they do not form a 2 X 2 X 2 subtriangle.
%C Without the restriction "non-equivalent (mod D_3)" the numbers are given by A234250.
%H Heinrich Ludwig, <a href="/A237530/b237530.txt">Table of n, a(n) for n = 2..1000</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1)
%F a(n) = (n^6 + 3*n^5 - 3*n^4 + 10*n^3 - 48*n^2 + IF(n==1 mod 2)*(27*n^2 - 45*n - 9) + IF(n==1 mod 3)*64)/288.
%F G.f.: x^3*(x^7-x^6-2*x^5-15*x^4-13*x^3-16*x^2-10*x-4) / ((x-1)^7*(x+1)^3*(x^2+x+1)). - _Colin Barker_, Feb 14 2014
%t LinearRecurrence[{3,0,-7,3,6,0,-6,-3,7,0,-3,1},{0,4,22,82,231,566,1216,2410,4428,7712,12780,20392},40] (* _Harvey P. Dale_, Dec 09 2021 *)
%Y Cf. A234250, A234247.
%K nonn,easy
%O 2,2
%A _Heinrich Ludwig_, Feb 13 2014