OFFSET
1,5
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 2.
(ii) If n > 92, then pi(p*n) is prime for some prime p <= n. If n > 39, then pi(pi(p*n)) is prime for some p <= n.
See also A238902 for another conjecture involving pi(pi(x)).
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2016.
EXAMPLE
a(3) = 1 since 3 and pi(pi((3-1)*3)) = pi(pi(6)) = pi(3) = 2 are both prime.
a(20) = 1 since 3 and pi(pi((3-1)*20)) = pi(pi(40)) = pi(12) = 5 are both prime.
a(48) = 1 since 29 and pi(pi((29-1)*48)) = pi(pi(1344)) = pi(217) = 47 are both prime.
MATHEMATICA
p[k_, n_]:=PrimeQ[PrimePi[PrimePi[(Prime[k]-1)n]]]
a[n_]:=Sum[If[p[k, n], 1, 0], {k, 1, PrimePi[n]}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 06 2014
STATUS
approved