login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235796
2*n - 1 - sigma(n).
12
0, 0, 1, 0, 3, -1, 5, 0, 4, 1, 9, -5, 11, 3, 5, 0, 15, -4, 17, -3, 9, 7, 21, -13, 18, 9, 13, -1, 27, -13, 29, 0, 17, 13, 21, -20, 35, 15, 21, -11, 39, -13, 41, 3, 11, 19, 45, -29, 40, 6, 29, 5, 51, -13, 37, -9, 33, 25, 57, -49, 59, 27, 21, 0, 45, -13, 65, 9, 41
OFFSET
1,5
COMMENTS
Partial sums give A004125.
Also 0 together with A120444.
It appears that a(n) = 0 iff n is a power of 2.
Numbers n with a(n) = 0 are called "almost perfect", "least deficient" or "slightly defective" numbers. See A000079. - Robert Israel, Jul 22 2014
a(n) = n - 2 iff n is prime.
a(n) = -1 iff n is a perfect number.
Also the alternating row sums of A239446. - Omar E. Pol, Jul 21 2014
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, New York, 2004.
FORMULA
a(n) = A005408(n-1) - A000203(n).
a(n) = -1 - A033880(n). - Michel Marcus, Jan 27 2014
a(n) = n - 1 - A001065(n). - Omar E. Pol, Jan 29 2014
a(n) = A033879(n) - 1. - Omar E. Pol, Jan 30 2014
a(n) = 2*n - 2 - A039653(n). - Omar E. Pol, Jan 31 2014
a(n) = (-1)*A237588(n). - Omar E. Pol, Feb 23 2014
a(n) = 2*n - A088580(n). - Omar E. Pol, Mar 23 2014
EXAMPLE
. The positive The sum of
n odd numbers divisors of n. a(n)
1 1 1 0
2 3 3 0
3 5 4 1
4 7 7 0
5 9 6 3
6 11 12 -1
7 13 8 5
8 15 15 0
9 17 13 4
10 19 18 1
...
MATHEMATICA
Table[2n-1-DivisorSigma[1, n], {n, 70}] (* Harvey P. Dale, Jul 11 2014 *)
PROG
(PARI) vector(100, n, (2*n-1)-sigma(n)) \\ Colin Barker, Jan 27 2014
(Magma) [2*n-1-SumOfDivisors(n): n in [1..100]]; // Vincenzo Librandi, Feb 25 2014
KEYWORD
sign
AUTHOR
Omar E. Pol, Jan 25 2014
STATUS
approved