login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233481
Number of singletons (strong fixed points) in pair-partitions.
4
0, 1, 4, 21, 144, 1245, 13140, 164745, 2399040, 39834585, 742940100, 15374360925, 349484058000, 8654336615925, 231842662751700, 6679510641428625, 205916703920928000, 6762863294018456625, 235719416966063530500, 8689887736412502745125
OFFSET
0,3
COMMENTS
For h(V) = number of singletons (non-crossing chords) in the pair-partition of 2n-elementary set P_2(2n), let T(2n) = sum_{V in P_2(2n)} h(V).
Elements of the sequence a(n) = T(2n).
a(n) is the number of linear chord diagrams on 2n vertices with one marked chord such that none of the remaining n-1 chords cross the marked chord, see [Young]. - Donovan Young, Aug 11 2020
LINKS
Donovan Young, A critical quartet for queuing couples, arXiv:2007.13868 [math.CO], 2020.
FORMULA
a(n) = T_{2n} = n*sum_{k=0..(n-1)} (2k-1)!!*(2n-2k-1)!!, where (2n-1)!! = 1*3*5*...*(2n-1).
From Peter Luschny, Dec 16 2013: (Start)
E.g.f.: x/((1-x)*sqrt(1-2*x)).
a(n) = 2*n*Gamma(1/2+n)*2_F_1([1/2,-n+1],[3/2],-1)/sqrt(Pi), where 2_F_1 is the hypergeometric function.
a(n) = n*((3*n-4)*a(n-1)/(n-1)-(2*n-3)*a(n-2)) for n>1.
a(n) = n*A034430(n-1) for n>=1.
a(n+1)/(n+1)! = JacobiP(n, 1/2, -n-1, 3).
2^n*a(n+1)/(n+1)! = A082590(n).
2^n*a(n+1)/(n+1) = A076729(n). (End)
a(n) ~ 2^(n+1/2) * n^n / exp(n). - Vaclav Kotesovec, Dec 20 2013
a(n) = (2*n)! * [z^(2*n)] 2*u*exp(u)*hypergeom([1/2], [3/2], u), where u = (z/2)^2. - Peter Luschny, Mar 14 2023
MAPLE
a := n -> 2*n*GAMMA(1/2+n)*hypergeom([1/2, -n+1], [3/2], -1)/sqrt(Pi);
seq(simplify(a(n)), n = 0..19); # Peter Luschny, Dec 16 2013
# Alternative:
u := (z/2)^2: egf := 2*u*exp(u)*hypergeom([1/2], [3/2], u): ser := series(egf, z, 40): seq((2*n)!*coeff(ser, z, 2*n), n = 0..19); # Peter Luschny, Mar 14 2023
MATHEMATICA
Table[Sum[(2 k - 1)!! (2 n - 2 k - 1)!!, {k, 0, n - 1}], {n, 0, 30}] (* T. D. Noe, Dec 13 2013 *)
PROG
(Sage)
def A233481():
a, b, n = 0, 1, 1
while True:
yield a
n += 1
a, b = b, n*((3*n-4)*b/(n-1)-(2*n-3)*a)
a = A233481(); [next(a) for i in range(17)] # Peter Luschny, Dec 14 2013
CROSSREFS
A081054 counts pair-partitions of a fixed size without singletons, i.e., linear chord diagrams with 2n nodes and n arcs in which each arc crosses another arc.
Sequence in context: A228063 A228111 A305986 * A308337 A307525 A345749
KEYWORD
nonn
AUTHOR
Wojciech Bozejko, Dec 11 2013
STATUS
approved