The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228111 Integer nearest to (S(n)*F(4n)(S(n))), where F(4n)(x) are Fibonacci polynomials of multiple of 4 indices (4n) and S(n) = Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i) (see coefficients A, B, C(i) in comments). 6
 4, 21, 143, 1063, 8385, 68929, 584467, 5074924, 44885325, 402777151, 3656032622, 33492393634, 309106153431, 2870123507479, 26783122426197, 250971797533095, 2359952229466124, 22256979400698116, 210440626023838163, 1994088284872617955, 18931694933036811169 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Coefficients are A=16103485019141/2900449771918928, B=5262046568827901/29305205016290, C(0)=296261685121849/265642652464758, C(1)=38398556529727/750568780742436, C(2)=0, C(3)=-11594434149768/8254020049890781. This sequence gives a good approximation of the number of primes with n digits (A006879); see (A228112). As the squares of odd-indexed Fibonacci numbers F(2n+1)(1) (see A227693) are equal or close to the first values of pi(10^n) (A006880), and as F(4n)(1)=(F(2n+1)(1))^2- (F(2n-1)(1))^2, it is legitimate to ask whether the first values of the differences pi(10^n)- pi(10^(n-1)) (A006879) are also close or equal to multiple of 4 index Fibonacci numbers F(4n)(1); e.g., for n=2, F(8)(1)=21.  However, when using Fibonacci polynomials, the exact relation is xF(4n)(x)=(F(2n+1)(x))^2- (F(2n-1)(x))^2. To obtain this sequence, one switches to the product of x and multiple of 4 index Fibonacci polynomials F(4n)(x), and one obtains the sequence a(n) by computing x as a function of n such that (xF(4n)(x)) fit the values of pi(10^n)- pi(10^(n-1)) for 1 <= n <= 25, with pi(1)=0. REFERENCES John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144. LINKS Vladimir Pletser, Table of n, a(n) for n = 1..500 Eric Weisstein's World of Mathematics, Fibonacci Polynomial. FORMULA a(n) = round(S(n)*F(4n)(S(n))), where S(n)=Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i)). EXAMPLE For n=1, xF(4)(x) = x^2*(x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+1))))^i)= 1.11173... to obtain a(1) = round((1.11173...)*F(4)(1.11173...)) = 4. For n=2, xF(8)(x) = x^2*(x^2+2)*(x^4+4*x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+4))))^i)= 0.99998788... to obtain a(2) = round((0.99998788...)*F(8)(0.99998788...)) = 21. MAPLE with(combinat):A:=16103485019141/2900449771918928: B:=5262046568827901/29305205016290: C(0):=296261685121849/265642652464758: C(1):=38398556529727/750568780742436: C(2):=0: C(3):=-11594434149768/8254020049890781: b:=n->log(log(A*(B+n^2))): c:=n->sum(C(i)*(b(n))^i, i=0..3): seq(round(c(n)*fibonacci(4*n, c(n))), n=1..25); CROSSREFS Cf. A006879, A228112, A228113, A228114, A228115, A228116. Sequence in context: A158577 A006879 A228063 * A305986 A233481 A308337 Adjacent sequences:  A228108 A228109 A228110 * A228112 A228113 A228114 KEYWORD nonn AUTHOR Vladimir Pletser, Aug 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 23:50 EST 2020. Contains 331301 sequences. (Running on oeis4.)